1932

Abstract

Algebraic statistics uses tools from algebra (especially from multilinear algebra, commutative algebra, and computational algebra), geometry, and combinatorics to provide insight into knotty problems in mathematical statistics. In this review, we illustrate this on three problems related to networks: network models for relational data, causal structure discovery, and phylogenetics. For each problem, we give an overview of recent results in algebraic statistics, with emphasis on the statistical achievements made possible by these tools and their practical relevance for applications to other scientific disciplines.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-statistics-031017-100053
2020-03-07
2024-10-09
Loading full text...

Full text loading...

/deliver/fulltext/statistics/7/1/annurev-statistics-031017-100053.html?itemId=/content/journals/10.1146/annurev-statistics-031017-100053&mimeType=html&fmt=ahah

Literature Cited

  1. Agrawal R, Squires C, Yang KD, Shanmugam K, Uhler C 2019. ABCD-Strategy: budgeted experimental design for targeted causal structure discovery. Proc. Mach. Learn. Res. 89:3400–9
    [Google Scholar]
  2. Airoldi EM, Blei DM, Fienberg SE, Xing EP 2009. Mixed membership stochastic blockmodels. Advances in Neural Information Processing Systems 21 (NIPS 2008) D Koller, D. Schuurmans, Y Bengio, L Bottou 33–40 https://papers.nips.cc/paper/3578-mixed-membership-stochastic-blockmodels
    [Google Scholar]
  3. Allman ES, Ane C, Rhodes JA 2008. Identifiability of a Markovian model of molecular evolution with gamma-distributed rates. Adv. Appl. Probab. 40:229–49
    [Google Scholar]
  4. Allman ES, Degnan JH, Rhodes JA 2018. Species tree inference from gene splits by unrooted star methods. IEEE/ACM Trans. Comput. Biol. Bioinform. 15:337–42
    [Google Scholar]
  5. Allman ES, Long C, Rhodes JA 2019. Species tree inference from genomic sequences using the log-det distance. SIAM J. Appl. Algebr. Geom. 3:107–27
    [Google Scholar]
  6. Allman ES, Matias C, Rhodes J 2009. Identifiability of parameters in latent structure models with many observed variables. Ann. Stat. 37:3099–132
    [Google Scholar]
  7. Allman ES, Petrović S, Rhodes JA, Sullivant S 2011. Identifiability of two-tree mixtures for group-based models. IEEE/ACM Trans. Comput. Biol. Bioinform. 8:710–22
    [Google Scholar]
  8. Allman ES, Rhodes JA. 2007. Phylogenetic invariants. Reconstructing Evolution O Gascuel, MA Steel 108–41 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  9. Allman ES, Rhodes JA. 2008. Phylogenetic ideals and varieties for the general Markov model. Adv. Appl. Math. 40:127–48
    [Google Scholar]
  10. Allman ES, Rhodes JA, Sturmfels B, Zwiernik P 2015. Tensors of nonnegative rank two. Linear Algebr. Appl. 473:37–53
    [Google Scholar]
  11. Allman ES, Rhodes JA, Taylor A 2014. A semialgebraic description of the general Markov model on phylogenetic trees. SIAM J. Discrete Math. 28:736–55
    [Google Scholar]
  12. Andersson SA. 1975. Invariant normal models. Ann. Stat. 3:132–54
    [Google Scholar]
  13. Aoki S, Hara H, Takemura A 2012. Markov Bases in Algebraic Statistics New York: Springer
    [Google Scholar]
  14. Bailey RA. 1981. A unified approach to design of experiments. J. R. Stat. Soc. A 144:214–23
    [Google Scholar]
  15. Banerjee D, Ma Z. 2017. Optimal hypothesis testing for stochastic block models with growing degrees. arXiv:1705.05305 [math.ST]
  16. Baños H. 2019. Identifying species network features from gene tree quartets under the coalescent model. Bull. Math. Biol. 81:494–534
    [Google Scholar]
  17. Barndorff-Nielsen OE. 1978. Information and Exponential Families in Statistical Theory New York: Wiley
    [Google Scholar]
  18. Carnegie NB, Krivitsky PN, Hunter DR, Goodreau SM 2015. An approximation method for improving dynamic network model fitting. J. Comput. Graph. Stat. 24:502–19
    [Google Scholar]
  19. Carr MP, Devadoss SL. 2006. Coxeter complexes and graph-associahedra. Topol. Appl. 153:2155–216
    [Google Scholar]
  20. Casanellas M, Fernández-Sánchez J. 2010. Relevant phylogenetic invariants of evolutionary models. J. Math. Pures Appl. 96:207–29
    [Google Scholar]
  21. Casanellas M, Fernández-Sánchez J, Kedzierska A 2012. The space of phylogenetic mixtures for equivariant models. Algorithms Mol. Biol. 7:33
    [Google Scholar]
  22. Casanellas M, Sullivant S. 2005. The strand symmetric model. Algebraic Statistics for Computational Biology L Pachter, B Sturmfels 305–21 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  23. Catanese F, Hoşten S, Khetan A, Sturmfels B 2006. The maximum likelihood degree. Am. J. Math. 128:671–97
    [Google Scholar]
  24. Cavender JA, Felsenstein J. 1987. Invariants of phylogenies in a simple case with discrete states. J. Classif. 4:57–71
    [Google Scholar]
  25. Chang JT. 1996. Full reconstruction of Markov models on evolutionary trees: identifiability and consistency. Math. Biosci. 137:51–73
    [Google Scholar]
  26. Chatterjee S, Diaconis P, Sly A 2011. Random graphs with a given degree sequence. Ann. Appl. Probab. 21:1400–35
    [Google Scholar]
  27. Chickering DM. 2002. Optimal structure identification with greedy search. J. Mach. Learn. Res. 3:507–54
    [Google Scholar]
  28. Chifman J, Kubatko L. 2014. Quartet inference from SNP data under the coalescent model. Bioinformatics 30:3317–24
    [Google Scholar]
  29. Chifman J, Kubatko L. 2015. Identifiability of the unrooted species tree topology under the coalescent model with time-reversible substitution processes, site-specific rate variation, and invariable sites. J. Theor. Biol. 374:35–47
    [Google Scholar]
  30. Chifman J, Kubatko L. 2019. An invariants-based method for efficient identification of hybrid speciation from large-scale genomic data. BMC Evol. Biol. 19:112
    [Google Scholar]
  31. Chor B, Hendy MD, Snir S 2006. Maximum likelihood Jukes–Cantor triplets: analytic solutions. Mol. Biol. Evol. 23:626–32
    [Google Scholar]
  32. Cong L, Ran F, Cox D, Lin S, Barretto R et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–23
    [Google Scholar]
  33. Cussens J, Haws D, Studený M 2017. Polyhedral aspects of score equivalence in Bayesian network structure learning. Math. Program. Ser. A 164:285–324
    [Google Scholar]
  34. Davidson R, Lawhorn M, Rusinko J, Weber N 2018. Efficient quartet representations of trees and applications to supertree and summary methods. IEEE/ACM Trans. Comput. Biol. Bioinform. 15:1010–15
    [Google Scholar]
  35. Devitt TJ, Wright AM, Cannatella DC, Hillis DM 2019. Species delimitation in endangered groundwater salamanders: implications for aquifer management and biodiversity conservation. PNAS 116:2624–33
    [Google Scholar]
  36. Diaconis P, Sturmfels B. 1998. Algebraic algorithms for sampling from conditional distributions. Ann. Stat. 26:363–97
    [Google Scholar]
  37. Dillon M. 2016. Runtime for performing exact tests on the p1 statistical model for random graphs PhD Thesis, Illinois Inst. Technol., Chicago
    [Google Scholar]
  38. Dinh V, Matsen IV, Frederick A 2017. The shape of the one-dimensional phylogenetic likelihood function. Ann. Appl. Probab. 27:1646–77
    [Google Scholar]
  39. Drton M, Lin S, Weihs L, Zwiernik P 2017. Marginal likelihood and model selection for Gaussian latent tree and forest models. Bernoulli 23:1202–32
    [Google Scholar]
  40. Drton M, Robeva E, Weihs L 2018. Nested covariance determinants and restricted trek separation in Gaussian graphical models. arXiv:1807.07561 [math.ST]
  41. Drton M, Sturmfels B, Sullivant S 2009. Lectures on Algebraic Statistics Basel: Birkhäuser
    [Google Scholar]
  42. Erdös P, Rényi A. 1961. On the evolution of random graphs. Bull. Inst. Int. Stat. 38:343–47
    [Google Scholar]
  43. Evans RJ. 2018. Model selection and local geometry. arXiv:1801.08364 [math.ST]
  44. Evans SN, Speed TP. 1993. Invariants of some probability models used in phylogenetic inference. Ann. Stat. 21:355–77
    [Google Scholar]
  45. Felsenstein J. 1978. Cases in which parsimony or compatibility methods will be positively misleading. Syst. Zool. 27:401–10
    [Google Scholar]
  46. Fernández-Sánchez J, Casanellas M. 2016. Invariant versus classical quartet inference when evolution is heterogeneous across sites and lineages. Syst. Biol. 65:280–91
    [Google Scholar]
  47. Fienberg SE, Meyer MM, Wasserman SS 1985. Statistical analysis of multiple sociometric relations. J. Am. Stat. Assoc. 80:51–67
    [Google Scholar]
  48. Fienberg SE, Slavkovic AB. 2004. Making the release of confidential data from multi-way tables count. Chance 17:5–10
    [Google Scholar]
  49. Fienberg SE, Wasserman SS. 1981a. Categorical data analysis of single sociometric relations. Sociol. Methodol. 12:156–92
    [Google Scholar]
  50. Fienberg SE, Wasserman SS. 1981b. Discussion of Holland, P. W. and Leinhardt, S. “An exponential family of probability distributions for directed graphs. J. Am. Stat. Assoc. 76:54–57
    [Google Scholar]
  51. Frank O, Strauss D. 1986. Markov graphs. J. Am. Stat. Assoc. 81:832–42
    [Google Scholar]
  52. Gaither J, Kubatko L. 2016. Hypothesis tests for phylogenetic quartets, with applications to coalescent-based species tree inference. J. Theor. Biol. 408:179–86
    [Google Scholar]
  53. Gao C, Lafferty J. 2017. Testing network structure using relations between small subgraph probabilities. arXiv:1704.06742 [stat.ME]
  54. Gillispie SB, Perlman MD. 2001. Enumerating Markov equivalence classes of acyclic digraph models. Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence J Breese, D Koller 171–77 San Francisco: Morgan Kaufmann
    [Google Scholar]
  55. Goldenberg A, Zheng AX, Fienberg SE, Airoldi EM 2010. A survey of statistical network models. Found. Trends Mach. Learn. 2:129–233
    [Google Scholar]
  56. Gross E, Long C. 2018. Distinguishing phylogenetic networks. SIAM J. Appl. Algebr. Geom. 2:72–93
    [Google Scholar]
  57. Gross E, Petrović S, Stasi D 2017. Goodness-of-fit for log-linear network models: Dynamic Markov bases using hypergraphs. Ann. Inst. Stat. Math. 69:673–704
    [Google Scholar]
  58. Handcock MS. 2003. Assessing degeneracy in statistical models for social networks Work. Pap. 39, Cent. Stat. Soc. Sci., Univ. Wash Seattle:
    [Google Scholar]
  59. Hendy MD, Penny D. 1989. A framework for the quantitative study of evolutionary trees. Syst. Zool. 38:297–309
    [Google Scholar]
  60. Hendy MD, Penny D, Steel M 1994. A discrete Fourier analysis for evolutionary trees. PNAS 91:3339–43
    [Google Scholar]
  61. Hoff PD, Raftery AE, Handcock MS 2002. Latent space approaches to social network analysis. J. Am. Stat. Assoc. 97:1090–98
    [Google Scholar]
  62. Holland PW, Laskey KB, Leinhardt S 1983. Stochastic blockmodels: first steps. Soc. Netw. 5:109–37
    [Google Scholar]
  63. Holland PW, Leinhardt S. 1981. An exponential family of probability distributions for directed graphs (with discussion). J. Am. Stat. Assoc. 76:33–65
    [Google Scholar]
  64. Huelsenbeck JP. 1995. Performance of phylogenetic methods in simulation. Syst. Biol. 44:17–48
    [Google Scholar]
  65. Hunter DR, Goodreau SM, Handcock MS 2008. Goodness of fit of social network models. J. Am. Stat. Assoc. 103:248–58
    [Google Scholar]
  66. Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M 2008. ergm: a package to fit, simulate and diagnose exponential-family models for networks. J. Stat. Softw. 24:1–29
    [Google Scholar]
  67. Jaakkola T, Sontag D, Globerson A, Meila M 2010. Learning Bayesian network structure using LP relaxations. Proceedings of the 13th International Conference on Artificial Intelligence and Statistics YW Teh, M Titterington 358–65 http://proceedings.mlr.press/v9/
    [Google Scholar]
  68. James AT. 1954. Normal multivariate analysis and the orthogonal group. Ann. Math. Stat. 25:40–75
    [Google Scholar]
  69. Jensen ST. 1988. Covariance hypotheses which are linear in both the covariance and the inverse covariance. Ann. Stat. 116:302–22
    [Google Scholar]
  70. Ji P, Jin J. 2016. Coauthorship and citation networks for statisticians. Ann. Appl. Stat. 10:1779–812
    [Google Scholar]
  71. Jukes TH, Cantor C. 1969. Evolution of protein molecules. Mammalian Protein Metabolism III HN Munro 21–132 New York: Academic
    [Google Scholar]
  72. Kahle D. 2014. Algstat. R package for algebraic statistics https://github.com/dkahle/algstat
    [Google Scholar]
  73. Kalisch M, Bühlmann P. 2007. Estimating high-dimensional directed acyclic graphs with the PC-algorithm. J. Mach. Learn. Res. 8:613–36
    [Google Scholar]
  74. Karrer B, Newman ME. 2011. Stochastic blockmodels and community structure in networks. Phys. Rev. E 83:016107
    [Google Scholar]
  75. Karwa V, Pati D, Petrović S, Solus L, Alexeev N et al. 2016. Exact tests for stochastic block models. arXiv:1612.06040 [stat.ME]
  76. Karwa V, Petrović S. 2016. Coauthorship and citation networks for statisticians: comment. Ann. Appl. Stat. 10:1827–34
    [Google Scholar]
  77. Kedzierska AM, Drton M, Guigo R, Casanellas M 2012. SPIn: model selection for phylogenetic mixtures via linear invariants. Mol. Biol. Evol. 29:929–37
    [Google Scholar]
  78. Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16:111–20
    [Google Scholar]
  79. Kimura M. 1981. Estimation of evolutionary distances between homologous nucleotide sequences. PNAS 78:454–58
    [Google Scholar]
  80. Kosta D, Kubjas K. 2019. Maximum likelihood estimation of symmetric group-based models via numerical algebraic geometry. Bull. Math. Biol. 81:337–60
    [Google Scholar]
  81. Krivitsky PN, Kolaczyk ED. 2015. On the question of effective sample size in network modeling: an asymptotic inquiry. Stat. Sci. 30:198–98
    [Google Scholar]
  82. Kubjas K, Robeva E, Sturmfels B 2015. Fixed points of the EM algorithm and nonnegative rank boundaries. Ann. Stat. 43:422–61
    [Google Scholar]
  83. Lake JA. 1987. A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol. Biol. Evol. 4:167–91
    [Google Scholar]
  84. Lauritzen SL. 1996. Graphical Models Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  85. Lei J. 2016. A goodness-of-fit test for stochastic block models. Ann. Stat. 44:401–24
    [Google Scholar]
  86. Lin S, Uhler C, Sturmfels B, Bühlmann P 2014. Hypersurfaces and their singularities in partial correlation testing. Found. Comput. Math. 14:1079–116
    [Google Scholar]
  87. Malaspinas AS, Uhler C. 2011. Detecting epistasis via Markov bases. J. Algebr. Stat. 2:36–53
    [Google Scholar]
  88. Matsen FA. 2009. Fourier transform inequalities for phylogenetic trees. IEEE/ACM Trans. Comput. Biol. Bioinform. 6:89–95
    [Google Scholar]
  89. Mohammadi F, Uhler C, Wang C, Yu J 2018. Generalized permutohedra from probabilistic graphical models. SIAM J. Discrete Math. 32:64–93
    [Google Scholar]
  90. Morton J, Pachter L, Shiu A, Sturmfels B, Wienand O 2009. Convex rank tests and semigraphoids. SIAM J. Discrete Math. 23:1117–34
    [Google Scholar]
  91. Müller S, Feliu E, Regensburger G, Conradi C, Shiu A, Dickenstein A 2016. Sign conditions for injectivity of generalized polynomial maps with applications to chemical reaction networks and real algebraic geometry. Found. Comput. Math. 16:69–97
    [Google Scholar]
  92. Neyman J. 1923. Sur les applications de la théorie des probabilités aux experiences agricoles: essai des principes. Roczniki Nauk Rolniczych 10:1–51
    [Google Scholar]
  93. Pachter L, Sturmfels B. 2005. Algebraic Statistics for Computational Biology Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  94. Pearl J. 2000. Causality: Models, Reasoning and Inference Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  95. Pearl J. 2012. The causal foundations of structural equation modeling. Handbook of Structural Equation Modeling RH Hoyle 68–91 New York: Guilford
    [Google Scholar]
  96. Pistone G, Riccomagno E, Wynn H 2001. Algebraic Statistics Boca Raton, FL: Chapman & Hall/CRC
    [Google Scholar]
  97. Radhakrishnan A, Solus L, Uhler C 2017. Counting Markov equivalence classes by number of immoralities. Proceedings of the 2017 Conference on Uncertainty in Artificial Intelligence art. 97. http://auai.org/uai2017/proceedings/papers/97.pdf
    [Google Scholar]
  98. Radhakrishnan A, Solus L, Uhler C 2018. Counting Markov equivalence classes for DAG models on trees. Discrete Appl. Math. 244:170–85
    [Google Scholar]
  99. Ramsey J, Zhang J, Spirtes P 2006. Adjacency-faithfulness and conservative causal inference. Proceedings of the Twenty-Second Conference on Uncertainty in Artificial Intelligence R Dechter, T Richardson 401–8 Arlington, VA: AUAI Press
    [Google Scholar]
  100. Ranwez V, Gascuel O. 2001. Quartet-based phylogenetic inference: improvements and limits. Mol. Biol. Evol. 18:1103–16
    [Google Scholar]
  101. Raskutti G, Uhler C. 2018. Learning directed acyclic graphs based on sparsest permutations. Statistics 7:e183
    [Google Scholar]
  102. Rhodes J, Sullivant S. 2012. Identifiability of large phylogenetic mixture models. Bull. Math. Biol. 74:212–31
    [Google Scholar]
  103. Richardson TS, Evans RJ, Robins JM, Shpitser I 2017. Nested Markov properties for acyclic directed mixed graphs. arXiv:1701.06686 [stat.ME]
  104. Rinaldo A, Petrović S, Fienberg SE 2013. Maximum likelihood estimation in the β-model. Ann. Stat. 41:1085–110
    [Google Scholar]
  105. Robins JM. 1999. Association, causation, and marginal structural models. Synthese 121:151–79
    [Google Scholar]
  106. Robinson RW. 1973. Counting labeled acyclic digraphs. New Directions in the Theory of Graphs F Harary 239–73 New York: Academic
    [Google Scholar]
  107. Roca-Lacostena J, Fernández-Sánchez J. 2018. Embeddability of Kimura 3ST Markov matrices. J. Theor. Biol. 445:128–35
    [Google Scholar]
  108. Rubin DB. 1974. Estimating causal effects of treatments in randomized and nonrandomized studies. J. Educ. Psychol. 66:688–701
    [Google Scholar]
  109. Rubin DB. 2005. Causal inference using potential outcomes. J. Am. Stat. Assoc. 100:322–31
    [Google Scholar]
  110. Sáenz-de Cabezón E, Wynn HP 2015. Hilbert functions in design for reliability. IEEE Trans. Reliab. 64:83–93
    [Google Scholar]
  111. Shalizi CR, Rinaldo A. 2013. Consistency under sampling of exponential random graph models. Ann. Stat. 41:508–35
    [Google Scholar]
  112. Snir S, Rao S. 2010. Quartets maxcut: a divide and conquer quartets algorithm. IEEE/ACM Trans. Comput. Biol. Bioinform. 7:704–18
    [Google Scholar]
  113. Solus L, Wang Y, Matejovicova L, Uhler C 2017. Consistency guarantees for permutation-based causal inference algorithms. arXiv:1702.03530 [math.ST]
  114. Spirtes P, Glymour C, Scheines R 2001. Causation, Prediction and Search Cambridge, MA: MIT Press
    [Google Scholar]
  115. Steel M. 2016. Phylogeny: Discrete and Random Processes in Evolution Philadelphia: SIAM
    [Google Scholar]
  116. Steel M, Faller B. 2009. Markovian log-supermodularity, and its applications in phylogenetics. Appl. Math. Lett. 22:1141–44
    [Google Scholar]
  117. Strimmer K, von Haeseler A 1996. Quartet puzzling: a quartet maximum likelihood method for reconstructing tree topologies. Mol. Biol. Evol. 13:964–60
    [Google Scholar]
  118. Sullivant S. 2018. Algebraic Statistics Providence, RI: Am. Math. Soc.
    [Google Scholar]
  119. Sumner JG. 2017. Dimensional reduction for the general Markov model on phylogenetic trees. Bull. Math. Biol. 79:619–34
    [Google Scholar]
  120. Sumner JG, Jarvis PD, Fernández-Sánchez J, Kaine BT, Woodhams MD, Holland BR 2012. Is the general time-reversible model bad for molecular phylogenetics. Syst. Biol. 61:1069–74
    [Google Scholar]
  121. Sumner JG, Taylor AE, Holland BR, Jarvis PD 2017. Developing a statistically powerful measure for quartet tree inference using phylogenetic identities and Markov invariants. J. Math. Biol. 75:6–71619–54
    [Google Scholar]
  122. Swofford DL. 2003. PAUP *: Phylogenetic analysis using parsimony (* and other methods), version 4.0b10 Sunderland, MA: Sinauer Assoc.
    [Google Scholar]
  123. Uhler C, Raskutti G, Yu B, Bühlmann P 2013. Geometry of faithfulness assumption in causal inference. Ann. Stat. 41:436–63
    [Google Scholar]
  124. Verma TS, Pearl J. 1990. Equivalence and synthesis of causal models. Proceedings of the Sixth Annual Conference on Uncertainty in Artificial Intelligence PP Bonissone, M Henrion, LN Kanal, JF Lemmer 220–27 Amsterdam: Elsevier
    [Google Scholar]
  125. Votaw DF. 1948. Testing compound symmetry in a normal multivariate distribution. Ann. Math. Stat. 19:447–73
    [Google Scholar]
  126. Wang Y, Solus L, Yang KD, Uhler C 2017. Permutation-based causal inference algorithms with interventions. Adv. Neural Inform. Proc. Syst. 30:5824–33
    [Google Scholar]
  127. Wang Y, Squires C, Belyaeva A, Uhler C 2018. Direct estimation of differences in causal graphs. Adv. Neural Inform. Proc. Syst. 31:3774–85
    [Google Scholar]
  128. Wang YR, Bickel PJ. 2017. Likelihood-based model selection for stochastic block models. Ann. Stat. 45:500–28
    [Google Scholar]
  129. Wilks SS. 1946. Sample criteria for testing equality of means, equality of variances, and equality of covariances in a normal multivariate distribution. Ann. Math. Stat. 17:257–81
    [Google Scholar]
  130. Wright S. 1921. Correlation and causation. J. Agric. Res. 10:557–85
    [Google Scholar]
  131. Wright S. 1934. The method of path coefficients. Ann. Math. Stat. 5:161–215
    [Google Scholar]
  132. Yan T, Jiang B, Fienberg SE, Leng C 2018. Statistical inference in a directed network model with covariates. J. Am. Stat. Assoc. 114:857–68
    [Google Scholar]
  133. Yan T, Leng C, Zhu J 2016. Asymptotics in directed exponential random graph models with an increasing bi-degree sequence. Ann. Stat. 44:31–57
    [Google Scholar]
  134. Yan X, Shalizi C, Jensen JE, Krzakala F, Moore C et al. 2014. Model selection for degree-corrected block models. J. Stat. Mech. Theory Exp. 2014:P05007
    [Google Scholar]
  135. Yang KD, Katcoff A, Uhler C 2018. Characterizing and learning equivalence classes of causal DAGs under interventions. Proc. Mach. Learn. Res. 80:5537–46
    [Google Scholar]
  136. Zhang J, Spirtes P. 2003. Strong faithfulness and uniform consistency in causal inference. Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence C Meek, U Kjærulff 632–39 San Francisco: Morgan Kaufmann
    [Google Scholar]
  137. Zwiernik P. 2015. Semialgebraic Statistics and Latent Tree Models Boca Raton, FL: Chapman & Hall/CRC
    [Google Scholar]
  138. Zwiernik P, Smith JQ. 2011. Implicit inequality constraints in a binary tree model. Electron. J. Stat. 5:1276–312
    [Google Scholar]
/content/journals/10.1146/annurev-statistics-031017-100053
Loading
/content/journals/10.1146/annurev-statistics-031017-100053
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error