1932

Abstract

Exoplanets can be detected with various observational techniques. Among them, radial velocity (RV) has the key advantages of revealing the architecture of planetary systems and measuring planetary mass and orbital eccentricities. RV observations are poised to play a key role in the detection and characterization of Earth twins. However, the detection of such small planets is not yet possible due to very complex, temporally correlated instrumental and astrophysical stochastic signals. Furthermore, exploring the large parameter space of RV models exhaustively and efficiently presents difficulties. In this review, we frame RV data analysis as a problem of detection and parameter estimation in unevenly sampled, multivariate time series. The objective of this review is two-fold: to introduce the motivation, methodological challenges, and numerical challenges of RV data analysis to nonspecialists, and to unify the existing advanced approaches in order to identify areas for improvement.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-statistics-033021-012225
2023-03-09
2024-06-17
Loading full text...

Full text loading...

/deliver/fulltext/statistics/10/1/annurev-statistics-033021-012225.html?itemId=/content/journals/10.1146/annurev-statistics-033021-012225&mimeType=html&fmt=ahah

Literature Cited

  1. Ahrer E, Queloz D, Rajpaul VM, Ségransan D, Bouchy F et al. 2021. The HARPS search for southern extra-solar planets—XLV. Two Neptune mass planets orbiting HD 13808: a study of stellar activity modelling's impact on planet detection. Mon. Not. R. Astron. Soc. 503:11248–63
    [Google Scholar]
  2. Aigrain S, Pont F, Zucker S. 2012. A simple method to estimate radial velocity variations due to stellar activity using photometry. Mon. Not. R. Astron. Soc. 419:3147–58
    [Google Scholar]
  3. Anglada-Escudé G, Tuomi M. 2012. A planetary system with gas giants and super-Earths around the nearby M dwarf GJ 676A. Optimizing data analysis techniques for the detection of multi-planetary systems. Astron. Astrophys. 548:A58
    [Google Scholar]
  4. Artigau É, Astudillo-Defru N, Delfosse X, Bouchy F, Bonfils X et al. 2014. Telluric-line subtraction in high-accuracy velocimetry: a PCA-based approach. Observatory Operations: Strategies, Processes, and Systems V AB Peck, CR Benn, RL Seaman 914905 Bellingham, WA: SPIE
    [Google Scholar]
  5. Astudillo-Defru N, Bonfils X, Delfosse X, Ségransan D, Forveille T et al. 2015. The HARPS search for southern extra-solar planets. XXXVI. Planetary systems and stellar activity of the M dwarfs GJ 3293, GJ 3341, and GJ 3543. Astron. Astrophys. 575:A119
    [Google Scholar]
  6. Baluev RV. 2008. Assessing the statistical significance of periodogram peaks. Mon. Not. R. Astron. Soc. 385:1279–85
    [Google Scholar]
  7. Baluev RV. 2009. Accounting for velocity jitter in planet search surveys. Mon. Not. R. Astron. Soc. 393:969–78
    [Google Scholar]
  8. Baluev RV. 2013a. Detecting multiple periodicities in observational data with the multifrequency periodogram – I. Analytic assessment of the statistical significance. Mon. Not. R. Astron. Soc. 436:1807–18
    [Google Scholar]
  9. Baluev RV. 2013b. Detecting non-sinusoidal periodicities in observational data: the von Mises periodogram for variable stars and exoplanetary transits. Mon. Not. R. Astron. Soc. 431:1167–79
    [Google Scholar]
  10. Baluev RV. 2015. Keplerian periodogram for Doppler exoplanet detection: optimized computation and analytic significance thresholds. Mon. Not. R. Astron. Soc. 446:1478–92
    [Google Scholar]
  11. Baranne A, Mayor M, Poncet JL. 1979. CORAVEL – a new tool for radial velocity measurements. Vistas Astron. 23:279–316
    [Google Scholar]
  12. Barragán O, Aigrain S, Rajpaul VM, Zicher N. 2022. PYANETI – II. A multidimensional Gaussian process approach to analysing spectroscopic time-series. Mon. Not. R. Astron. Soc. 509:1866–83
    [Google Scholar]
  13. Batalha NE, Lewis T, Fortney JJ, Batalha NM, Kempton E et al. 2019. The precision of mass measurements required for robust atmospheric characterization of transiting exoplanets. Astrophys. J. 885:1L25
    [Google Scholar]
  14. Bedell M, Hogg DW, Foreman-Mackey D, Montet BT, Luger R. 2019. WOBBLE: a data-driven analysis technique for time-series stellar spectra. Astron. J. 158:4164
    [Google Scholar]
  15. Bertaux JL, Lallement R, Ferron S, Boonne C, Bodichon R. 2014. TAPAS, a web-based service of atmospheric transmission computation for astronomy. Astron. Astrophys. 564:A46
    [Google Scholar]
  16. Binnenfeld A, Shahaf S, Anderson RI, Zucker S. 2021. New periodograms separating orbital radial velocities and spectral shape variation. arXiv:2111.02383 [astro-ph.IM]
  17. Boisse I, Bonfils X, Santos NC. 2012. SOAP – a tool for the fast computation of photometry and radial velocity induced by stellar spots. Astron. Astrophys. 545:A109
    [Google Scholar]
  18. Bonomo AS, Desidera S, Benatti S, Borsa F, Crespi S et al. 2017. The GAPS programme with HARPS-N at TNG. XIV. Investigating giant planet migration history via improved eccentricity and mass determination for 231 transiting planets. Astron. Astrophys. 602:A107
    [Google Scholar]
  19. Borgniet S, Meunier N, Lagrange AM. 2015. Using the Sun to estimate Earth-like planets detection capabilities. V. Parameterizing the impact of solar activity components on radial velocities. Astron. Astrophys. 581:A133
    [Google Scholar]
  20. Bouchy F, Pepe F, Queloz D 2001. Fundamental photon noise limit to radial velocity measurements. Astron. Astrophys. 374:733–39
    [Google Scholar]
  21. Brewer BJ, Donovan CP. 2015. Fast Bayesian inference for exoplanet discovery in radial velocity data. Mon. Not. R. Astron. Soc. 448:43206–14
    [Google Scholar]
  22. Brewer JM, Fischer DA, Blackman RT, Cabot SHC, Davis AB et al. 2020. EXPRES. I. HD 3651 as an ideal RV benchmark. Astron. J. 160:267
    [Google Scholar]
  23. Butler RP, Marcy GW, Williams E, McCarthy C, Dosanjh P, Vogt SS. 1996. Attaining Doppler precision of 3 m s−1. Publ. Astron. Soc. Pac. 108:500
    [Google Scholar]
  24. Cale BL, Reefe M, Plavchan P, Tanner A, Gaidos E et al. 2021. Diving beneath the sea of stellar activity: chromatic radial velocities of the young AU Mic planetary system. Astron. J. 162:6295
    [Google Scholar]
  25. Camacho JD, Faria JP, Viana PTP. 2022. Modelling stellar activity with Gaussian process regression networks. arXiv:2205.06627 [astro-ph.EP]
  26. Cegla H. 2019. The impact of stellar surface magnetoconvection and oscillations on the detection of temperate, Earth-mass planets around Sun-like stars. Geosciences 9:3114
    [Google Scholar]
  27. Cegla HM, Watson CA, Shelyag S, Mathioudakis M, Moutari S. 2019. Stellar surface magnetoconvection as a source of astrophysical noise. III. Sun-as-a-star simulations and optimal noise diagnostics. Astrophys. J. 879:155
    [Google Scholar]
  28. Collier Cameron A, Ford EB, Shahaf S, Aigrain S, Dumusque X et al. 2021. Separating planetary reflex Doppler shifts from stellar variability in the wavelength domain. Mon. Not. R. Astron. Soc. 505:21699–717
    [Google Scholar]
  29. Collier Cameron A, Mortier A, Phillips D, Dumusque X, Haywood RD et al. 2019. Three years of Sun-as-a-star radial-velocity observations on the approach to solar minimum. Mon. Not. R. Astron. Soc. 487:11082–100
    [Google Scholar]
  30. Connes P. 1985. Absolute astronomical accelerometry. Astrophys. Space Sci. 110:211–55
    [Google Scholar]
  31. Correia ACM, Couetdic J, Laskar J, Bonfils X, Mayor M et al. 2010. The HARPS search for southern extra-solar planets. XIX. Characterization and dynamics of the GJ 876 planetary system. Astron. Astrophys. 511:A21
    [Google Scholar]
  32. Crass J, Gaudi BS, Leifer S, Beichman C, Bender C et al. 2021. Extreme Precision Radial Velocity Working Group final report. arXiv:2107.14291 [astro-ph.IM]
  33. Cretignier M, Dumusque X, Hara NC, Pepe F 2021. YARARA: significant improvement in RV precision through post-processing of spectral time series. Astron. Astrophys. 653:A43
    [Google Scholar]
  34. Cretignier M, Dumusque X, Pepe F 2022. Stellar activity correction using PCA decomposition of shells. Astron. Astrophys. 659:A68
    [Google Scholar]
  35. Cunha D, Santos NC, Figueira P, Santerne A, Bertaux JL, Lovis C. 2014. Impact of micro-telluric lines on precise radial velocities and its correction. Astron. Astrophys. 568:A35
    [Google Scholar]
  36. Davis AB, Cisewski J, Dumusque X, Fischer DA, Ford EB. 2017. Insights on the spectral signatures of stellar activity and planets from PCA. Astrophys. J. 846:59
    [Google Scholar]
  37. Dawson RI, Fabrycky DC. 2010. Radial velocity planets de-aliased: a new, short period for super-Earth 55 Cnc e. Astrophys. J. 722:937–53
    [Google Scholar]
  38. de Beurs ZL, Vanderburg A, Shallue CJ, Dumusque X, Collier Cameron A et al. 2020. Identifying exoplanets with deep learning. IV. Removing stellar activity signals from radial velocity measurements using neural networks. arXiv:2011.00003 [astro-ph.EP]
  39. Delisle JB, Hara N, Ségransan D. 2020a. Efficient modeling of correlated noise. I. Statistical significance of periodogram peaks. Astron. Astrophys. 635:A83
    [Google Scholar]
  40. Delisle JB, Hara N, Ségransan D. 2020b. Efficient modeling of correlated noise. II. A flexible noise model with fast and scalable methods. Astron. Astrophys. 638:A95
    [Google Scholar]
  41. Delisle JB, Ségransan D, Dumusque X, Diaz RF, Bouchy F et al. 2018. The HARPS search for southern extra-solar planets. XLIII. A compact system of four super-Earth planets orbiting HD 215152. Astron. Astrophys. 614:A133
    [Google Scholar]
  42. Delisle JB, Unger N, Hara NC, Ségransan D. 2022. Efficient modeling of correlated noise. III. Scalable methods for jointly modeling several observables' time series with Gaussian processes. arXiv:2201.02440 [astro-ph.EP]
  43. Díaz RF, Ségransan D, Udry S, Lovis C, Pepe F et al. 2016. The HARPS search for southern extra-solar planets. XXXVIII. Bayesian re-analysis of three systems. New super-Earths, unconfirmed signals, and magnetic cycles. Astron. Astrophys. 585:A134
    [Google Scholar]
  44. Dravins D, Ludwig HG, Freytag B. 2021. Spatially resolved spectroscopy across stellar surfaces. V. Observational prospects: toward Earth-like exoplanet detection. Astron. Astrophys. 649:A17
    [Google Scholar]
  45. Dumusque X. 2018. Measuring precise radial velocities on individual spectral lines. I. Validation of the method and application to mitigate stellar activity. Astron. Astrophys. 620:A47
    [Google Scholar]
  46. Dumusque X, Boisse I, Santos NC. 2014. SOAP 2.0: a tool to estimate the photometric and radial velocity variations induced by stellar spots and plages. Astrophys. J. 796:132
    [Google Scholar]
  47. Dumusque X, Borsa F, Damasso M, Díaz RF, Gregory PC et al. 2017. Radial-velocity fitting challenge. II. First results of the analysis of the data set. Astron. Astrophys. 598:A133
    [Google Scholar]
  48. Dumusque X, Cretignier M, Sosnowska D, Buchschacher N, Lovis C et al. 2021. Three years of HARPS-N high-resolution spectroscopy and precise radial velocity data for the Sun. arXiv:2009.01945 [astro-ph.SR]
  49. Dumusque X, Santos NC, Udry S, Lovis C, Bonfils X. 2011a. Planetary detection limits taking into account stellar noise. II. Effect of stellar spot groups on radial-velocities. Astron. Astrophys. 527:A82
    [Google Scholar]
  50. Dumusque X, Udry S, Lovis C, Santos NC, Monteiro MJPFG. 2011b. Planetary detection limits taking into account stellar noise. I. Observational strategies to reduce stellar oscillation and granulation effects. Astron. Astrophys. 525:A140
    [Google Scholar]
  51. Einstein A. 1905. Zur Elektrodynamik bewegter Körper. Ann. Phys. 322:10891–921
    [Google Scholar]
  52. Faria JP, Santos NC, Figueira P, Brewer BJ. 2018. kima: Exoplanet detection in radial velocities. J. Open Source Softw. 3:26487
    [Google Scholar]
  53. Faria JP, Suárez Mascareño A, Figueira P, Silva AM, Damasso M et al. 2022. A candidate short-period sub-Earth orbiting Proxima Centauri. Astron. Astrophys. 658:A115
    [Google Scholar]
  54. Feng F, Tuomi M, Jones HRA. 2017. Agatha: disentangling periodic signals from correlated noise in a periodogram framework. Mon. Not. R. Astron. Soc. 470:4794–814
    [Google Scholar]
  55. Figueira P, Santos NC, Pepe F, Lovis C, Nardetto N. 2013. Line-profile variations in radial-velocity measurements. Two alternative indicators for planetary searches. Astron. Astrophys. 557:A93
    [Google Scholar]
  56. Ford EB. 2005. Quantifying the uncertainty in the orbits of extrasolar planets. Astron. J. 129:1706–17
    [Google Scholar]
  57. Ford EB. 2006. Improving the efficiency of Markov chain Monte Carlo for analyzing the orbits of extrasolar planets. Astrophys. J. 642:505–22
    [Google Scholar]
  58. Ford EB, Gregory PC 2007. Bayesian model selection and extrasolar planet detection. Statistical Challenges in Modern Astronomy IV GJ Babu, ED Feigelson, p. 189
    [Google Scholar]
  59. Ford EB, Moorhead AV, Veras D. 2011. A Bayesian surrogate model for rapid time series analysis and application to exoplanet observations. Bayesian Anal. 6:3475–599
    [Google Scholar]
  60. Foreman-Mackey D, Agol E, Ambikasaran S, Angus R 2017. Fast and scalable Gaussian process modeling with applications to astronomical time series. Astron. J. 154:220
    [Google Scholar]
  61. Foreman-Mackey D, Hogg DW, Lang D, Goodman J 2013. emcee: The MCMC hammer. Publ. Astron. Soc. Pac. 125:306
    [Google Scholar]
  62. Fulton BJ, Rosenthal LJ, Hirsch LA, Isaacson H, Howard AW et al. 2021. California Legacy Survey. II. Occurrence of giant planets beyond the ice line. Astrophys. J. Suppl. Ser. 255:114
    [Google Scholar]
  63. Gilbertson C, Ford EB, Jones DE, Stenning DC. 2020. Toward extremely precise radial velocities. II. A tool for using multivariate Gaussian processes to model stellar activity. Astrophys. J. 905:2155
    [Google Scholar]
  64. Gordon TA, Agol E, Foreman-Mackey D. 2020. A fast, two-dimensional Gaussian process method based on celerite: applications to transiting exoplanet discovery and characterization. Astron. J. 160:5240
    [Google Scholar]
  65. Gregory PC. 2005a. A Bayesian analysis of extrasolar planet data for HD 73526. Astrophys. J. 631:1198–214
    [Google Scholar]
  66. Gregory PC. 2005b. Bayesian Logical Data Analysis for the Physical Sciences Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  67. Gregory PC. 2007. A Bayesian Kepler periodogram detects a second planet in HD208487. Mon. Not. R. Astron. Soc. 374:1321–33
    [Google Scholar]
  68. Gregory PC. 2016. An apodized Kepler periodogram for separating planetary and stellar activity signals. arXiv:1601.08105 [astro-ph.SR]
  69. Guo Z, Ford EB, Stello D, Luhn JK, Mahadevan S et al. 2022. Modeling stellar oscillations and granulation in radial velocity time series: a Fourier-based method. arXiv:2202.06094 [astro-ph.SR]
  70. Halverson S, Terrien R, Mahadevan S, Roy A, Bender C et al. 2016. A comprehensive radial velocity error budget for next generation Doppler spectrometers. Ground-Based and Airborne Instrumentation for Astronomy VI CJ Evans, L Simard, H Takami, p. 99086p Bellingham, WA: SPIE
    [Google Scholar]
  71. Handley WJ, Hobson MP, Lasenby AN. 2015. POLYCHORD: next-generation nested sampling. Mon. Not. R. Astron. Soc. 453:4384–98
    [Google Scholar]
  72. Hara NC, Boué G, Laskar J, Correia ACM. 2017. Radial velocity data analysis with compressed sensing techniques. Mon. Not. R. Astron. Soc. 464:1220–46
    [Google Scholar]
  73. Hara NC, de Poyferré T, Delisle JB, Hoffmann M 2022a. A continuous multiple hypothesis testing framework for optimal exoplanet detection. arXiv:2203.04957 [astro-ph.IM]
  74. Hara NC, Delisle JB, Unger N, Dumusque X. 2022b. Testing whether a signal is strictly periodic. Application to disentangling planets and stellar activity in radial velocities. Astron. Astrophys. 658:A177
    [Google Scholar]
  75. Hara NC, Unger N, Delisle JB, Díaz R, Ségransan D. 2022c. Improving exoplanet detection capabilities with the false inclusion probability: comparison with other detection criteria in the context of radial velocities. Astron. Astrophys. 663:A14
    [Google Scholar]
  76. Harvey J 1985. High-resolution helioseismology. Future Missions in Solar, Heliospheric & Space Plasma Physics E Rolfe, B Battrick 199 Noordwijk, Neth: ESA
    [Google Scholar]
  77. Haywood RD, Collier Cameron A, Queloz D, Barros SCC, Deleuil M et al. 2014. Planets and stellar activity: hide and seek in the CoRoT-7 system. Mon. Not. R. Astron. Soc. 443:2517–31
    [Google Scholar]
  78. Haywood RD, Collier Cameron A, Unruh YC, Lovis C, Lanza AF et al. 2016. The Sun as a planet-host star: proxies from SDO images for HARPS radial-velocity variations. Mon. Not. R. Astron. Soc. 457:3637–51
    [Google Scholar]
  79. Haywood RD, Milbourne TW, Saar SH, Mortier A, Phillips D et al. 2020. Unsigned magnetic flux as a proxy for radial-velocity variations in Sun-like stars. arXiv:2005.13386 [astro-ph.SR]
  80. He MY, Ford EB, Ragozzine D. 2021. Friends and foes: conditional occurrence rates of exoplanet companions and their impact on radial velocity follow-up surveys. Astron. J. 162:5
    [Google Scholar]
  81. Hirano T, Kuzuhara M, Kotani T, Omiya M, Kudo T et al. 2020. Precision radial velocity measurements by the forward-modeling technique in the near-infrared. Publ. Astron. Soc. Jpn. 72:693
    [Google Scholar]
  82. Holzer PH, Cisewski-Kehe J, Zhao L, Ford EB, Gilbertson C, Fischer DA. 2021. A stellar activity F-statistic for exoplanet surveys (SAFE). Astron. J. 161:6272
    [Google Scholar]
  83. Jeffreys H. 1961. Theory of Probability Oxford, UK: Clarendon. , 3rd ed..
    [Google Scholar]
  84. Jones DE, Stenning DC, Ford EB, Wolpert RL, Loredo TJ, Dumusque X. 2020. Improving exoplanet detection power: multivariate Gaussian process models for stellar activity. arXiv:1711.01318 [astro-ph.IM]
  85. Jurić M, Tremaine S 2008. Dynamical origin of extrasolar planet eccentricity distribution. Astrophys. J. 686:603–20
    [Google Scholar]
  86. Kasper M, Cerpa Urra N, Pathak P, Bonse M, Nousiainen J et al. 2021. PCS – a roadmap for exoearth imaging with the ELT. arXiv:2103.11196 [astro-ph.IM]
  87. Kass RE, Raftery AE. 1995. Bayes factors. J. Am. Stat. Assoc. 90:430773–95
    [Google Scholar]
  88. Kempton EMR, Bean JL, Louie DR, Deming D, Koll DDB et al. 2018. A framework for prioritizing the TESS planetary candidates most amenable to atmospheric characterization. Publ. Astron. Soc. Pac. 130:993114401
    [Google Scholar]
  89. Kürster M, Endl M, Rouesnel F, Els S, Kaufer A et al. 2003. The low-level radial velocity variability in Barnard's star (= GJ 699). Secular acceleration, indications for convective redshift, and planet mass limits. Astron. Astrophys. 403:1077–87
    [Google Scholar]
  90. Lagrange AM, Desort M, Meunier N. 2010. Using the Sun to estimate Earth-like planets detection capabilities. I. Impact of cold spots. Astron. Astrophys. 512:A38
    [Google Scholar]
  91. Lanza AF, Malavolta L, Benatti S, Desidera S, Bignamini A et al. 2018. The GAPS Programme with HARPS-N at TNG. XVII. Line profile indicators and kernel regression as diagnostics of radial-velocity variations due to stellar activity in solar-like stars. Astron. Astrophys. 616:A155
    [Google Scholar]
  92. Laughlin G, Chambers JE. 2001. Short-term dynamical interactions among extrasolar planets. Astrophys. J. 551:1L109–13
    [Google Scholar]
  93. Leleu A, Alibert Y, Hara NC, Hooton MJ, Wilson TG et al. 2021. Six transiting planets and a chain of Laplace resonances in TOI-178. Astron. Astrophys. 649:A26
    [Google Scholar]
  94. Lienhard F, Mortier A, Buchhave L, Collier Cameron A, López-Morales M et al. 2022. Multi-mask least-squares deconvolution: extracting RVs using tailored masks. Mon. Not. R. Astron. Soc. 513:45328–43
    [Google Scholar]
  95. Lin ASJ, Monson A, Mahadevan S, Ninan JP, Halverson S et al. 2022. Observing the Sun as a star: design and early results from the NEID solar feed. Astron. J. 163:4184
    [Google Scholar]
  96. Lindegren L, Dravins D. 2003. The fundamental definition of “radial velocity. .” Astron. Astrophys. 401:1185–201
    [Google Scholar]
  97. Lomb NR. 1976. Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 39:447–62
    [Google Scholar]
  98. Lovis C, Dumusque X, Santos NC, Bouchy F, Mayor M et al. 2011. The HARPS search for southern extra-solar planets. XXXI. Magnetic activity cycles in solar-type stars: statistics and impact on precise radial velocities. arXiv:1107.5325 [astro-ph.SR]
  99. Lovis C, Fischer D. 2010. Radial velocity techniques for exoplanets. Exoplanets S Seager 27–53. Tucson: Univ. Ariz. Press
    [Google Scholar]
  100. Mayor M, Queloz D. 1995. A Jupiter-mass companion to a solar-type star. Nature 378:355–59
    [Google Scholar]
  101. Meunier N. 2021. Stellar variability in radial velocity. arXiv:2104.06072 [astro-ph.SR]
  102. Meunier N, Lagrange AM, Borgniet S, Rieutord M. 2015. Using the Sun to estimate Earth-like planet detection capabilities. VI. Simulation of granulation and supergranulation radial velocity and photometric time series. Astron. Astrophys. 583:A118
    [Google Scholar]
  103. Mortier A, Collier Cameron A 2017. Stacked Bayesian general Lomb-Scargle periodogram: identifying stellar activity signals. Astron. Astrophys. 601:A110
    [Google Scholar]
  104. Murray CD, Correia ACM. 2010. Keplerian orbits and dynamics of exoplanets. Exoplanets S Seager 15–23. Tucson: Univ. Ariz. Press
    [Google Scholar]
  105. Nelson BE, Ford EB, Buchner J, Cloutier R, Díaz RF et al. 2020. Quantifying the Bayesian evidence for a planet in radial velocity data. Astron. J. 159:273
    [Google Scholar]
  106. Nelson BE, Ford EB, Wright JT, Fischer DA, von Braun K et al. 2014. The 55 Cancri planetary system: fully self-consistent N-body constraints and a dynamical analysis. Mon. Not. R. Astron. Soc. 441:442–51
    [Google Scholar]
  107. Nelson BE, Robertson PM, Payne MJ, Pritchard SM, Deck KM et al. 2016. An empirically derived three-dimensional Laplace resonance in the Gliese 876 planetary system. Mon. Not. R. Astron. Soc. 455:2484–99
    [Google Scholar]
  108. Noyes RW 1984. The study of stellar global oscillations by CAII H and K variations. Space Research in Stellar Activity and Variability A Mangeney, F Praderie 113–15. Paris: Obs. Paris
    [Google Scholar]
  109. Papamarkou T, Lindo A, Ford EB. 2021. Geometric adaptive Monte Carlo in random environment. Found. Data Sci. 3:2201–24
    [Google Scholar]
  110. Pepe F, Mayor M, Galland F, Naef D, Queloz D et al. 2002. The CORALIE survey for southern extra-solar planets. VII. Two short-period Saturnian companions to HD 108147 and HD 168746. Astron. Astrophys. 388:632–38
    [Google Scholar]
  111. Perger M, Anglada-Escudé G, Ribas I, Rosich A, Herrero E, Morales JC. 2021. Auto-correlation functions of astrophysical processes, and their relation to Gaussian processes. Application to radial velocities of different starspot configurations. Astron. Astrophys. 645:A58
    [Google Scholar]
  112. Perryman M. 2011. The Exoplanet Handbook Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  113. Price-Whelan AM, Hogg DW, Foreman-Mackey D, Rix HW. 2017. The Joker: a custom Monte Carlo sampler for binary-star and exoplanet radial velocity data. Astrophys. J. 837:120
    [Google Scholar]
  114. Quanz SP, Ottiger M, Fontanet E, Kammerer J, Menti F et al. 2021. Large Interferometer For Exoplanets (LIFE): I. Improved exoplanet detection yield estimates for a large mid-infrared space-interferometer mission. arXiv:2101.07500 [astro-ph.EP]
  115. Queloz D, Bouchy F, Moutou C, Hatzes A, Hébrard G et al. 2009. The CoRoT-7 planetary system: two orbiting super-Earths. Astron. Astrophys. 506:303–19
    [Google Scholar]
  116. Queloz D, Henry GW, Sivan JP, Baliunas SL, Beuzit JL et al. 2001. No planet for HD 166435. Astron. Astrophys. 379:279–87
    [Google Scholar]
  117. Rajpaul V, Aigrain S, Osborne MA, Reece S, Roberts S 2015. A Gaussian process framework for modelling stellar activity signals in radial velocity data. Mon. Not. R. Astron. Soc. 452:32269–91
    [Google Scholar]
  118. Rajpaul VM, Aigrain S, Buchhave LA. 2020. A robust, template-free approach to precise radial velocity extraction. Mon. Not. R. Astron. Soc. 492:33960–83
    [Google Scholar]
  119. Rasmussen CE, Williams CKI. 2005. Gaussian Processes for Machine Learning Cambridge, MA: MIT Press
    [Google Scholar]
  120. Robertson P, Bender C, Mahadevan S, Roy A, Ramsey LW 2016. Proxima Centauri as a benchmark for stellar activity indicators in the near-infrared. Astrophys. J. 832:2112
    [Google Scholar]
  121. Rosenthal LJ, Fulton BJ, Hirsch LA, Howard A. 2019. An expanded catalog of long-period exoplanets, discovered with HIRES, Lick-Hamilton, and APF. Bull. Am. Astron. Soc. 51:6303.03
    [Google Scholar]
  122. Rosenthal LJ, Fulton BJ, Hirsch LA, Isaacson HT, Howard AW et al. 2021. The California Legacy Survey. I. A catalog of 178 planets from precision radial velocity monitoring of 719 nearby stars over three decades. Astrophys. J. Suppl. Ser. 255:18
    [Google Scholar]
  123. Saar SH, Donahue RA. 1997. Activity-related radial velocity variation in cool stars. Astrophys. J. 485:1319–27
    [Google Scholar]
  124. Sandford E, Kipping D, Collins M. 2019. The multiplicity distribution of Kepler's exoplanets. Mon. Not. R. Astron. Soc. 489:33162–73
    [Google Scholar]
  125. Santerne A, Díaz RF, Almenara JM, Bouchy F, Deleuil M et al. 2015. PASTIS: Bayesian extrasolar planet validation – II. Constraining exoplanet blend scenarios using spectroscopic diagnoses. Mon. Not. R. Astron. Soc. 451:2337–51
    [Google Scholar]
  126. Santos NC, Udry S, Mayor M, Naef D, Pepe F et al. 2003. The CORALIE survey for southern extra-solar planets. XI. The return of the giant planet orbiting HD 192263. Astron. Astrophys. 406:373–81
    [Google Scholar]
  127. Scargle JD. 1982. Studies in astronomical time series analysis. II – Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 263:835–53
    [Google Scholar]
  128. Schrijver CJ. 2002. Solar spots as prototypes for stellar spots. Astron. Nachr. 323:157–64
    [Google Scholar]
  129. Schuster A. 1898. On the investigation of hidden periodicities with application to a supposed 26 day period of meteorological phenomena. Terr. Magn. 3:113–41
    [Google Scholar]
  130. Shannon C. 1948. A mathematical theory of communication. Bell Syst. Tech. J. 27:379–423, 623–56
    [Google Scholar]
  131. Simola U, Bonfanti A, Dumusque X, Cisewski-Kehe J, Kaski S, Corander J. 2022. Accounting for stellar activity signals in radial-velocity data by using change point detection techniques. Astron. Astrophys. 664:A127
    [Google Scholar]
  132. Smette A, Sana H, Noll S, Horst H, Kausch W et al. 2015. Molecfit: a general tool for telluric absorption correction. I. Method and application to ESO instruments. Astron. Astrophys. 576:A77
    [Google Scholar]
  133. Spergel D, Gehrels N, Baltay C, Bennett D, Breckinridge J et al. 2015. Wide-Field InfrarRed Survey Telescope-astrophysics focused telescope assets WFIRST-AFTA 2015 report. arXiv:1503.03757 [astro-ph.IM]
  134. Stalport M, Delisle JB, Udry S, Matthews EC, Bourrier V, Leleu A. 2022. A general stability-driven approach for the refinement of multi-planet systems. Astron. Astrophys. 664:A53
    [Google Scholar]
  135. Strassmeier KG. 2009. Starspots. Astron. Astrophys. Rev. 17:251–308
    [Google Scholar]
  136. Suárez Mascareño A, Damasso M, Lodieu N, Sozzetti A, Béjar VJS et al. 2021. Rapid contraction of giant planets orbiting the 20-million-year-old star V1298 Tau. Nat. Astron. 6:232–40
    [Google Scholar]
  137. Suárez Mascareño A, Rebolo R, González Hernández JI, Esposito M 2017. Characterization of the radial velocity signal induced by rotation in late-type dwarfs. Mon. Not. R. Astron. Soc. 468:44772–81
    [Google Scholar]
  138. Süveges M. 2014. Extreme-value modelling for the significance assessment of periodogram peaks. Mon. Not. R. Astron. Soc. 440:32099–114
    [Google Scholar]
  139. Süveges M, Guy LP, Eyer L, Cuypers J, Holl B et al. 2015. A comparative study of four significance measures for periodicity detection in astronomical surveys. Mon. Not. R. Astron. Soc. 450:22052–66
    [Google Scholar]
  140. Tamayo D, Cranmer M, Hadden S, Rein H, Battaglia P et al. 2020. Predicting the long-term stability of compact multiplanet systems. PNAS 117:3118194–205
    [Google Scholar]
  141. Tuomi M, Kotiranta S. 2009. Bayesian analysis of the radial velocities of HD 11506 reveals another planetary companion. Astron. Astrophys. 496:L13–16
    [Google Scholar]
  142. Wise AW, Dodson-Robinson SE, Bevenour K, Provini A. 2018. New methods for finding activity-sensitive spectral lines: combined visual identification and an automated pipeline find a set of 40 activity indicators. Astron. J. 156:180
    [Google Scholar]
  143. Wolszczan A, Frail DA. 1992. A planetary system around the millisecond pulsar PSR1257 + 12. Nature 355:145–47
    [Google Scholar]
  144. Wright JT, Howard AW. 2009. Efficient fitting of multiplanet Keplerian models to radial velocity and astrometry data. Astrophys. J. Suppl. Ser. 182:205–15
    [Google Scholar]
  145. Zechmeister M, Reiners A, Amado PJ, Azzaro M, Bauer FF et al. 2018. Spectrum radial velocity analyser (SERVAL). High-precision radial velocities and two alternative spectral indicators. Astron. Astrophys. 609:A12
    [Google Scholar]
  146. Zhao J, Ford EB. 2022. FIESTA II. Disentangling stellar and instrumental variability from exoplanetary Doppler shifts in Fourier domain. arXiv:2201.03780 [astro-ph.EP]
  147. Zhao LL, Fischer DA, Ford EB, Wise A, Cretignier M et al. 2022. The EXPRES stellar signals project II. State of the field in disentangling photospheric velocities. Astron. J. 163:4171
    [Google Scholar]
  148. Zucker S. 2015. Detection of periodicity based on serial dependence of phase-folded data. Mon. Not. R. Astron. Soc. 449:2723–33
    [Google Scholar]
  149. Zucker S. 2018. Detection of periodicity based on independence tests – III. Phase distance correlation periodogram. Mon. Not. R. Astron. Soc. 474:1L86–L90
    [Google Scholar]
/content/journals/10.1146/annurev-statistics-033021-012225
Loading
/content/journals/10.1146/annurev-statistics-033021-012225
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error