1932

Abstract

Researchers studying the evolution of viral pathogens and other organisms increasingly encounter and use large and complex data sets from multiple different sources. Statistical research in Bayesian phylogenetics has risen to this challenge. Researchers use phylogenetics not only to reconstruct the evolutionary history of a group of organisms, but also to understand the processes that guide its evolution and spread through space and time. To this end, it is now the norm to integrate numerous sources of data. For example, epidemiologists studying the spread of a virus through a region incorporate data including genetic sequences (e.g., DNA), time, location (both continuous and discrete), and environmental covariates (e.g., social connectivity between regions) into a coherent statistical model. Evolutionary biologists routinely do the same with genetic sequences, location, time, fossil and modern phenotypes, and ecological covariates. These complex, hierarchical models readily accommodate both discrete and continuous data and have enormous combined discrete/continuous parameter spaces including, at a minimum, phylogenetic tree topologies and branch lengths. The increasedsize and complexity of these statistical models have spurred advances in computational methods to make them tractable. We discuss both the modeling and computational advances, as well as unsolved problems and areas of active research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-statistics-033021-112532
2023-03-09
2024-04-30
Loading full text...

Full text loading...

/deliver/fulltext/statistics/10/1/annurev-statistics-033021-112532.html?itemId=/content/journals/10.1146/annurev-statistics-033021-112532&mimeType=html&fmt=ahah

Literature Cited

  1. Alfaro ME, Zoller S, Lutzoni F. 2003. Bayes or bootstrap? A simulation study comparing the performance of Bayesian Markov chain Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence. Mol. Biol. Evol. 20:2255–66
    [Google Scholar]
  2. Allen GI, Tibshirani R. 2010. Transposable regularized covariance models with an application to missing data imputation. Ann. Appl. Stat. 4:2764
    [Google Scholar]
  3. Ayres DL, Cummings MP, Baele G, Darling AE, Lewis PO et al. 2019. BEAGLE 3: improved performance, scaling, and usability for a high-performance computing library for statistical phylogenetics. Syst. Biol. 68:61052–61
    [Google Scholar]
  4. Ayres DL, Darling A, Zwickl DJ, Beerli P, Holder MT et al. 2012. BEAGLE: an application programming interface and high-performance computing library for statistical phylogenetics. Syst. Biol. 61:1170–73
    [Google Scholar]
  5. Baele G, Lemey P, Rambaut A, Suchard MA. 2017a. Adaptive MCMC in Bayesian phylogenetics: an application to analyzing partitioned data in BEAST. Bioinformatics 33:121798–805
    [Google Scholar]
  6. Baele G, Suchard MA, Rambaut A, Lemey P. 2017b. Emerging concepts of data integration in pathogen phylodynamics. Syst. Biol. 66:1e47–65
    [Google Scholar]
  7. Baldauf SL. 2003. Phylogeny for the faint of heart: a tutorial. Trends Genet. 19:6345–51
    [Google Scholar]
  8. Barido-Sottani J, Vaughan TG, Stadler T. 2020. A multitype birth–death model for Bayesian inference of lineage-specific birth and death rates. Syst. Biol. 69:5973–86
    [Google Scholar]
  9. Bastide P, Ané C, Robin S, Mariadassou M 2018. Inference of adaptive shifts for multivariate correlated traits. Syst. Biol. 67:4662–80
    [Google Scholar]
  10. Bastide P, Ho LST, Baele G, Lemey P, Suchard MA. 2020. Efficient Bayesian inference of general Gaussian models on large phylogenetic trees. arXiv:2003.10336 [stat.AP]
  11. Berry V, Gascuel O. 1996. On the interpretation of bootstrap trees: appropriate threshold of clade selection and induced gain. Mol. Biol. Evol. 13:7999–1011
    [Google Scholar]
  12. Bouchard-Côté A, Sankararaman S, Jordan MI. 2012. Phylogenetic inference via sequential Monte Carlo. Syst. Biol. 61:4579–93
    [Google Scholar]
  13. Bouchard-Côté A, Vollmer SJ, Doucet A. 2018. The bouncy particle sampler: a nonreversible rejection-free Markov chain Monte Carlo method. J. Am. Stat. Assoc. 113:522855–67
    [Google Scholar]
  14. Bouckaert R. 2016. Phylogeography by diffusion on a sphere: whole world phylogeography. PeerJ 4:e2406
    [Google Scholar]
  15. Bradley BJ. 2008. Reconstructing phylogenies and phenotypes: a molecular view of human evolution. J. Anat. 212:4337–53
    [Google Scholar]
  16. Brito AF, Semenova E, Dudas G, Hassler GW, Kalinich CC et al. 2021. Global disparities in SARS-CoV-2 genomic surveillance. medRxiv. https://doi.org/10.1101/2021.08.21.21262393
    [Crossref]
  17. Bryja J, Mikula O, Šumbera R, Meheretu Y, Aghová T et al. 2014. Pan-African phylogeny of Mus (subgenus Nannomys) reveals one of the most successful mammal radiations in Africa. BMC Evol. Biol. 14:256
    [Google Scholar]
  18. Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B et al. 2017. Stan: A probabilistic programming language. J. Stat. Softw. 76:11–32
    [Google Scholar]
  19. Chipman H, George EI, McCulloch RE, Clyde M, Foster DP, Stine RA 2001. The practical implementation of Bayesian model selection. IMS Lect. Notes Monogr. Ser. 38:65–134
    [Google Scholar]
  20. Comas I, Coscolla M, Luo T, Borrell S, Holt KE et al. 2013. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat. Genet. 45:101176–82
    [Google Scholar]
  21. Cybis GB, Sinsheimer JS, Bedford T, Mather AE, Lemey P, Suchard MA. 2015. Assessing phenotypic correlation through the multivariate phylogenetic latent liability model. Ann. Appl. Stat. 9:2969–91
    [Google Scholar]
  22. Dang T, Kishino H. 2019. Stochastic variational inference for Bayesian phylogenetics: a case of CAT model. Mol. Biol. Evol. 36:4825–33
    [Google Scholar]
  23. De Maio N, Kalaghatgi P, Turakhia Y, Corbett-Detig R, Minh BQ, Goldman N. 2022. Maximum likelihood pandemic-scale phylogenetics. bioRxiv 2022.03.22.485312. https://doi.org/10.1101/2022.03.22.485312
    [Crossref]
  24. De Maio N, Wu CH, O'Reilly KM, Wilson D. 2015. New routes to phylogeography: a Bayesian structured coalescent approximation. PLOS Genet. 11:8e1005421
    [Google Scholar]
  25. Dearlove BL, Cody AJ, Pascoe B, Méric G, Wilson DJ, Sheppard SK. 2016. Rapid host switching in generalist Campylobacter strains erodes the signal for tracing human infections. ISME J. 10:3721–29
    [Google Scholar]
  26. Dellicour S, Baele G, Dudas G, Faria NR, Pybus OG et al. 2018. Phylodynamic assessment of intervention strategies for the West African Ebola virus outbreak. Nat. Commun. 9:12222
    [Google Scholar]
  27. Dellicour S, Durkin K, Hong SL, Vanmechelen B, Mart-Carreras J et al. 2021. A phylodynamic workflow to rapidly gain insights into the dispersal history and dynamics of SARS-CoV-2 lineages. Mol. Biol. Evol. 38:41608–13
    [Google Scholar]
  28. Dinh V, Bilge A, Zhang C, Matsen FA IV. 2017. Probabilistic path Hamiltonian Monte Carlo. PMLR 70:1009–18
    [Google Scholar]
  29. Drummond AJ, Ho SYW, Phillips MJ, Rambaut A. 2006. Relaxed phylogenetics and dating with confidence. PLOS Biol. 4:5e88
    [Google Scholar]
  30. Drummond AJ, Suchard MA. 2010. Bayesian random local clocks, or one rate to rule them all. BMC Biol. 8:1114
    [Google Scholar]
  31. Du Plessis L, McCrone JT, Zarebski AE, Hill V, Ruis C et al. 2021. Establishment and lineage dynamics of the SARS-CoV-2 epidemic in the UK. Science 371:6530708–12
    [Google Scholar]
  32. Dudas G, Carvalho LM, Bedford T, Tatem AJ, Baele G et al. 2017. Virus genomes reveal factors that spread and sustained the Ebola epidemic. Nature 544:7650309–15
    [Google Scholar]
  33. Edwards A, Cavalli-Sforza L 1964. Reconstruction of evolutionary trees. Phenetic and Phylogenetic Classification VH Heywood, J McNeill 67–76 London: Systematics Assoc.
    [Google Scholar]
  34. Efron B, Halloran E, Holmes S. 1996. Bootstrap confidence levels for phylogenetic trees. PNAS 93:147085–90
    [Google Scholar]
  35. Ehichioya DU, Hass M, Becker-Ziaja B, Ehimuan J, Asogun DA et al. 2011. Current molecular epidemiology of lassa virus in Nigeria. J. Clin. Microbiol. 49:31157–61
    [Google Scholar]
  36. Fabreti LG, Höhna S. 2021. Convergence assessment for Bayesian phylogenetic analysis using MCMC simulation. bioRxiv 2021.05.04.442586. https://doi.org/10.1101/2021.05.04.442586
    [Crossref]
  37. Faulkner JR, Magee AF, Shapiro B, Minin VN. 2020. Horseshoe-based Bayesian nonparametric estimation of effective population size trajectories. Biometrics 76:3677–90
    [Google Scholar]
  38. Felsenstein J. 1973a. Maximum likelihood and minimum-steps methods for estimating evolutionary trees from data on discrete characters. Syst. Biol. 22:3240–49
    [Google Scholar]
  39. Felsenstein J. 1973b. Maximum-likelihood estimation of evolutionary trees from continuous characters. Am. J. Hum. Genet. 25:5471–92
    [Google Scholar]
  40. Felsenstein J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17:6368–76
    [Google Scholar]
  41. Felsenstein J. 1985a. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:4783–91
    [Google Scholar]
  42. Felsenstein J. 1985b. Phylogenies and the comparative method. Am. Nat. 125:11–15
    [Google Scholar]
  43. Felsenstein J. 2004. Inferring Phylogenies, Vol. 2 Sunderland, MA: Sinauer Assoc.
  44. Felsenstein J, Kishino H. 1993. Is there something wrong with the bootstrap on phylogenies? A reply to Hillis and Bull. Syst. Biol. 42:2193–200
    [Google Scholar]
  45. Fernández-Sánchez J, Sumner JG, Jarvis PD, Woodhams MD. 2015. Lie Markov models with purine/pyrimidine symmetry. J. Math. Biol. 70:4855–91
    [Google Scholar]
  46. Fisher AA, Ji X, Zhang Z, Lemey P, Suchard MA 2021. Relaxed random walks at scale. Syst. Biol. 70:2258–67
    [Google Scholar]
  47. Flouri T, Izquierdo-Carrasco F, Darriba D, Aberer AJ, Nguyen LT et al. 2015. The phylogenetic likelihood library. Syst. Biol. 64:2356–62
    [Google Scholar]
  48. Fourment M, Claywell BC, Dinh V, McCoy C, Matsen FA IV, Darling AE 2018. Effective online Bayesian phylogenetics via sequential Monte Carlo with guided proposals. Syst. Biol. 67:3490–502
    [Google Scholar]
  49. Fourment M, Darling AE. 2019. Evaluating probabilistic programming and fast variational Bayesian inference in phylogenetics. PeerJ 7:e8272
    [Google Scholar]
  50. Fourment M, Magee AF, Whidden C, Bilge A, Matsen FA IV, Minin VN 2020. 19 dubious ways to compute the marginal likelihood of a phylogenetic tree topology. Syst. Biol. 69:2209–20
    [Google Scholar]
  51. Freckleton RP. 2012. Fast likelihood calculations for comparative analyses. Methods Ecol. Evol. 3:5940–47
    [Google Scholar]
  52. Gaya E, Redelings BD, Navarro-Rosinés P, Llimona X, De Cáceres M, Lutzoni F. 2011. Align or not to align? Resolving species complexes within the Caloplaca saxicola group as a case study. Mycologia 103:2361–78
    [Google Scholar]
  53. Gelfand AE. 2000. Gibbs sampling. J. Am. Stat. Assoc. 95:4521300–4
    [Google Scholar]
  54. Glanz H, Carvalho L. 2018. An expectation–maximization algorithm for the matrix normal distribution with an application in remote sensing. J. Multivar. Anal. 167:31–48
    [Google Scholar]
  55. Guindon S, De Maio N. 2021. Accounting for spatial sampling patterns in Bayesian phylogeography. PNAS 118:52e2105273118
    [Google Scholar]
  56. Haario H, Saksman E, Tamminen J. 2001. An adaptive Metropolis algorithm. Bernoulli 7:2223–42
    [Google Scholar]
  57. Hannaford NE, Heaps SE, Nye TM, Williams TA, Embley TM. 2020. Incorporating compositional heterogeneity into Lie Markov models for phylogenetic inference. Ann. Appl. Stat. 14:41964–83
    [Google Scholar]
  58. Harrington SM, Wishingrad V, Thomson RC. 2021. Properties of Markov chain Monte Carlo performance across many empirical alignments. Mol. Biol. Evol. 38:41627–40
    [Google Scholar]
  59. Hassler G, Gallone B, Aristide L, Allen WL, Tolkoff MR et al. 2021. Principled, practical, flexible, fast: A new approach to phylogenetic factor analysis. arXiv:2107.01246 [q-bio.PE]
  60. Hassler G, Tolkoff MR, Allen WL, Ho LST, Lemey P, Suchard MA. 2020. Inferring phenotypic trait evolution on large trees with many incomplete measurements. J. Am. Stat. Assoc. 117:678–92
    [Google Scholar]
  61. Hillis DM, Bull JJ. 1993. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst. Biol. 42:2182–92
    [Google Scholar]
  62. Ho LST, Ané C. 2014. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst. Biol. 63:3397–408
    [Google Scholar]
  63. Hobolth A, Jensen JL. 2011. Summary statistics for endpoint-conditioned continuous-time Markov chains. J. Appl. Probability 48:4911–24
    [Google Scholar]
  64. Hobolth A, Stone EA. 2009. Simulation from endpoint-conditioned, continuous-time Markov chains on a finite state space, with applications to molecular evolution. Ann. Appl. Stat. 3:31204–31
    [Google Scholar]
  65. Hodcroft EB, Zuber M, Nadeau S, Vaughan TG, Crawford KH et al. 2021. Spread of a SARS-CoV-2 variant through Europe in the summer of 2020. Nature 595:7869707–12
    [Google Scholar]
  66. Höhna S, Drummond AJ. 2012. Guided tree topology proposals for Bayesian phylogenetic inference. Syst. Biol. 61:11–11
    [Google Scholar]
  67. Höhna S, Freyman WA, Nolen Z, Huelsenbeck JP, May MR, Moore BR. 2019. A Bayesian approach for estimating branch-specific speciation and extinction rates. bioRxiv 555805. https://doi.org/10.1101/555805
    [Crossref]
  68. Holbrook AJ, Lemey P, Baele G, Dellicour S, Brockmann D et al. 2021. Massive parallelization boosts big Bayesian multidimensional scaling. J. Comput. Graph. Stat. 30:111–24
    [Google Scholar]
  69. Huelsenbeck JP, Rannala B, Masly JP. 2000. Accommodating phylogenetic uncertainty in evolutionary studies. Science 288:54752349–50
    [Google Scholar]
  70. Huelsenbeck JP, Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:8754–55
    [Google Scholar]
  71. Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP. 2001. Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294:55502310–14
    [Google Scholar]
  72. Izquierdo-Carrasco F, Alachiotis N, Berger S, Flouri T, Pissis SP, Stamatakis A. 2013. A generic vectorization scheme and a GPU kernel for the phylogenetic likelihood library. 2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and PhD Forum530–38 New York: IEEE
    [Google Scholar]
  73. Ji X, Zhang Z, Holbrook A, Nishimura A, Baele G et al. 2020. Gradients do grow on trees: a linear-time O(N)-dimensional gradient for statistical phylogenetics. Mol. Biol. Evol. 37:103047–60
    [Google Scholar]
  74. Kalkauskas A, Perron U, Sun Y, Goldman N, Baele G et al. 2021. Sampling bias and model choice in continuous phylogeography: getting lost on a random walk. PLOS Comput. Biol. 17:1e1008561
    [Google Scholar]
  75. Karcher MD, Palacios JA, Bedford T, Suchard MA, Minin VN. 2016. Quantifying and mitigating the effect of preferential sampling on phylodynamic inference. PLOS Comput. Biol. 12:3e1004789
    [Google Scholar]
  76. Ki C, Terhorst J. 2022. Variational phylodynamic inference using pandemic-scale data. bioRxiv 2022.02.10.479891. https://doi.org/10.1101/2022.02.10.479891
    [Crossref]
  77. Kingman JFC. 1982. The coalescent. Stoch. Process. Appl. 13:3235–48
    [Google Scholar]
  78. Kschischang FR, Frey BJ, Loeliger HA. 2001. Factor graphs and the sum-product algorithm. IEEE Trans. Inform. Theory 47:2498–519
    [Google Scholar]
  79. Kuo L, Mallick B. 1998. Variable selection for regression models. Sankhyā Indian J. Stat. Ser. B 60:65–81
    [Google Scholar]
  80. Lakner C, Van Der Mark P, Huelsenbeck JP, Larget B, Ronquist F. 2008. Efficiency of Markov chain Monte Carlo tree proposals in Bayesian phylogenetics. Syst. Biol. 57:186–103
    [Google Scholar]
  81. Lanfear R, Hua X, Warren DL. 2016. Estimating the effective sample size of tree topologies from Bayesian phylogenetic analyses. Genome Biol. Evol. 8:82319–32
    [Google Scholar]
  82. Larget B, Simon DL. 1999. Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Mol. Biol. Evol. 16:6750–59
    [Google Scholar]
  83. Latinne A, Hu B, Olival KJ, Zhu G, Zhang L et al. 2020. Origin and cross-species transmission of bat coronaviruses in China. Nat. Commun. 11:4235
    [Google Scholar]
  84. Lemey P, Hong SL, Hill V, Baele G, Poletto C et al. 2020. Accommodating individual travel history and unsampled diversity in Bayesian phylogeographic inference of SARS-CoV-2. Nat. Commun. 11:5110
    [Google Scholar]
  85. Lemey P, Rambaut A, Bedford T, Faria N, Bielejec F et al. 2014. Unifying viral genetics and human transportation data to predict the global transmission dynamics of human influenza H3N2. PLOS Pathog. 10:2e1003932
    [Google Scholar]
  86. Lemey P, Rambaut A, Drummond AJ, Suchard MA. 2009a. Bayesian phylogeography finds its roots. PLOS Comput. Biol. 5:9e1000520
    [Google Scholar]
  87. Lemey P, Rambaut A, Welch JJ, Suchard MA. 2010. Phylogeography takes a relaxed random walk in continuous space and time. Mol. Biol. Evol. 27:81877–85
    [Google Scholar]
  88. Lemey P, Ruktanonchai N, Hong SL, Colizza V, Poletto C et al. 2021. Untangling introductions and persistence in COVID-19 resurgence in Europe. Nature 595:7869713–17
    [Google Scholar]
  89. Lemey P, Salemi M, Vandamme AM. 2009b. The Phylogenetic Handbook: A Practical Approach to Phylogenetic Analysis and Hypothesis Testing Cambridge, UK: Cambridge Univ. Press
  90. Li S, Pearl DK, Doss H. 2000. Phylogenetic tree construction using Markov chain Monte Carlo. J. Am. Stat. Assoc. 95:450493–508
    [Google Scholar]
  91. Liu D, Shi W, Shi Y, Wang D, Xiao H et al. 2013. Origin and diversity of novel avian influenza A H7N9 viruses causing human infection: phylogenetic, structural, and coalescent analyses. Lancet 381:98811926–32
    [Google Scholar]
  92. Lopes HF, West M. 2004. Bayesian model assessment in factor analysis. Stat. Sin. 14:41–67
    [Google Scholar]
  93. MacPherson A, Louca S, McLaughlin A, Joy JB, Pennell MW. 2022. Unifying phylogenetic birth–death models in epidemiology and macroevolution. Syst. Biol. 71:1172–89
    [Google Scholar]
  94. Magee AF, Karcher MD, Matsen FA IV, Minin VN 2021. How trustworthy is your tree? Bayesian phylogenetic effective sample size through the lens of Monte Carlo error. arXiv:2109.07629 [stat.ME]
  95. Mau B, Newton MA, Larget B. 1999. Bayesian phylogenetic inference via Markov chain Monte Carlo methods. Biometrics 55:11–12
    [Google Scholar]
  96. May MR, Höhna S, Moore BR. 2016. A Bayesian approach for detecting the impact of mass-extinction events on molecular phylogenies when rates of lineage diversification may vary. Methods Ecol. Evol. 7:8947–59
    [Google Scholar]
  97. Meyer X. 2021. Adaptive tree proposals for Bayesian phylogenetic inference. Syst. Biol. 70:51015–32
    [Google Scholar]
  98. Minin VN, Bloomquist EW, Suchard MA. 2008. Smooth skyride through a rough skyline: Bayesian coalescent-based inference of population dynamics. Mol. Biol. Evol. 25:71459–71
    [Google Scholar]
  99. Minin VN, Suchard MA. 2008a. Counting labeled transitions in continuous-time Markov models of evolution. J. Math. Biol. 56:3391–412
    [Google Scholar]
  100. Minin VN, Suchard MA. 2008b. Fast, accurate and simulation-free stochastic mapping. Philos. Trans. R. Soc. B 363:15123985–95
    [Google Scholar]
  101. Mitov V, Bartoszek K, Asimomitis G, Stadler T. 2020. Fast likelihood calculation for multivariate Gaussian phylogenetic models with shifts. Theor. . Popul. Biol. 131:66–78
    [Google Scholar]
  102. Mohasel Afshar H, Domke J 2015. Reflection, refraction, and Hamiltonian Monte Carlo. Advances in Neural Information Processing Systems 28 (NIPS 2015) C Cortes, N Lawrence, D Lee, M Sugiyama, R Garnett Red Hook, NY: Curran
    [Google Scholar]
  103. Moretti AK, Zhang L, Naesseth CA, Venner H, Blei D, Pe'er I 2021. Variational combinatorial sequential Monte Carlo methods for Bayesian phylogenetic inference. arXiv:2106.00075 [stat.ML]
  104. Müller NF, Rasmussen DA, Stadler T. 2017. The structured coalescent and its approximations. Mol. Biol. Evol. 34:112970–81
    [Google Scholar]
  105. Nascimento FF, dos Reis M, Yang Z 2017. A biologist's guide to Bayesian phylogenetic analysis. Nat. Ecol. Evol. 1:101446–54
    [Google Scholar]
  106. Nee S, May RM, Harvey PH. 1994. The reconstructed evolutionary process. Philos. Trans. R. Soc. Lond. Ser. B 344:1309305–11
    [Google Scholar]
  107. Nishimura A, Dunson DB, Lu J. 2020. Discontinuous Hamiltonian Monte Carlo for discrete parameters and discontinuous likelihoods. Biometrika 107:2365–80
    [Google Scholar]
  108. Notohara M. 1990. The coalescent and the genealogical process in geographically structured population. J. Math. Biol. 29:159–75
    [Google Scholar]
  109. Pakman A, Paninski L 2013. Auxiliary-variable exact Hamiltonian Monte Carlo samplers for binary distributions. Advances in Neural Information Processing Systems 26 (NIPS 2013) CJ Burges, L Bottou, M Welling, Z Ghahramani, KQ Weinberger Red Hook, NY: Curran
    [Google Scholar]
  110. Pearl J. 1982. Reverend Bayes on inference engines: a distributed hierarchical approach. Proceedings of the AAAI Conference on Artificial Intelligence133–36 Menlo Park, CA: AAAI
    [Google Scholar]
  111. Peters EAJF, de With G. 2012. Rejection-free Monte Carlo sampling for general potentials. Phys. Rev. E 85:2026703
    [Google Scholar]
  112. Plantier JC, Leoz M, Dickerson JE, De Oliveira F, Cordonnier F et al. 2009. A new human immunodeficiency virus derived from gorillas. Nat. Med. 15:8871–72
    [Google Scholar]
  113. Press SJ, Shigemasu K 1989. Bayesian inference in factor analysis. Contributions to Probability and Statistics: Essays in Honor of Ingram Olkin LJ Gleser, MD Perlman, SJ Press, AR Sampson 271–87 New York: Springer
    [Google Scholar]
  114. Pybus OG, Suchard MA, Lemey P, Bernardin FJ, Rambaut A et al. 2012. Unifying the spatial epidemiology and molecular evolution of emerging epidemics. PNAS 109:3715066–71
    [Google Scholar]
  115. Rannala B, Yang Z 1996. Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J. Mol. Evol. 43:3304–11
    [Google Scholar]
  116. Roberts GO, Rosenthal JS. 2009. Examples of adaptive MCMC. J. Comput. Graph. Stat. 18:2349–67
    [Google Scholar]
  117. Ronquist F. 2004. Bayesian inference of character evolution. Trends Ecol. Evol. 19:9475–81
    [Google Scholar]
  118. Sánchez-Baracaldo P, Raven JA, Pisani D, Knoll AH. 2017. Early photosynthetic eukaryotes inhabited low-salinity habitats. PNAS 114:37E7737–45
    [Google Scholar]
  119. Sanmartín I, Van Der Mark P, Ronquist F. 2008. Inferring dispersal: a Bayesian approach to phylogeny-based island biogeography, with special reference to the canary islands. J. Biogeogr. 35:3428–49
    [Google Scholar]
  120. Siepel A, Pollard KS, Haussler D 2006. New methods for detecting lineage-specific selection. Research in Computational Molecular Biology 10th Annual International Conference, RECOMB 2006, Venice, Italy, April 2–5, 2006, Proceedings A Apostolico, C Guerra, S Istrail, PA Pevzner, M Waterman 190–205 New York: Springer
    [Google Scholar]
  121. Sinsheimer JS, Lake JA, Little RJ. 1996. Bayesian hypothesis testing of four-taxon topologies using molecular sequence data. Biometrics 52:193–210
    [Google Scholar]
  122. Stadler T. 2010. Sampling-through-time in birth–death trees. J. Theor. Biol. 267:3396–404
    [Google Scholar]
  123. Stadler T. 2011. Mammalian phylogeny reveals recent diversification rate shifts. PNAS 108:156187–92
    [Google Scholar]
  124. Stadler T, Kouyos R, von Wyl V, Yerly S, Böni J et al. 2012. Estimating the basic reproductive number from viral sequence data. Mol. Biol. Evol. 29:1347–57
    [Google Scholar]
  125. Stadler T, Kühnert D, Bonhoeffer S, Drummond AJ. 2013. Birth–death skyline plot reveals temporal changes of epidemic spread in HIV and hepatitis C virus (HCV). PNAS 110:1228–33
    [Google Scholar]
  126. Strimmer K, Pybus OG. 2001. Exploring the demographic history of DNA sequences using the generalized skyline plot. Mol. Biol. Evol. 18:122298–305
    [Google Scholar]
  127. Suchard MA, Rambaut A. 2009. Many-core algorithms for statistical phylogenetics. Bioinformatics 25:111370–76
    [Google Scholar]
  128. Suchard MA, Weiss RE, Sinsheimer JS. 2001. Bayesian selection of continuous-time Markov chain evolutionary models. Mol. Biol. Evol. 18:61001–13
    [Google Scholar]
  129. Sullivan J, Joyce P 2005. Model selection in phylogenetics. Annu. Rev. Ecol. Evol. Syst. 36:445–66
    [Google Scholar]
  130. Sumner JG, Fernández-Sánchez J, Jarvis PD. 2012. Lie Markov models. J. Theor. Biol. 298:16–31
    [Google Scholar]
  131. Teh Y, Daume H III, Roy DM 2007. Bayesian agglomerative clustering with coalescents. Advances in Neural Information Processing Systems 20 (NIPS 2007) J Platt, D Koller, Y Singer, S Roweis Red Hook, NY: Curran
    [Google Scholar]
  132. Terra-Araujo MH, de Faria AD, Vicentini A, Nylinder S, Swenson U. 2015. Species tree phylogeny and biogeography of the neotropical genus Pradosia (Sapotaceae, Chrysophylloideae). Mol. Phylogenet. Evol. 87:1–13
    [Google Scholar]
  133. Thompson E. 1975. Human Evolutionary Trees Cambridge, UK: Cambridge Univ. Press
  134. Thorne JL, Kishino H, Painter IS. 1998. Estimating the rate of evolution of the rate of molecular evolution. Mol. Biol. Evol. 15:121647–57
    [Google Scholar]
  135. Tolkoff MR, Alfaro ME, Baele G, Lemey P, Suchard MA. 2018. Phylogenetic factor analysis. Syst. Biol. 67:3384–99
    [Google Scholar]
  136. Uhlenbeck GE, Ornstein LS. 1930. On the theory of the Brownian motion. Phys. Rev. 36:5823
    [Google Scholar]
  137. Uyeda JC, Harmon LJ. 2014. A novel Bayesian method for inferring and interpreting the dynamics of adaptive landscapes from phylogenetic comparative data. Syst. Biol. 63:6902–18
    [Google Scholar]
  138. Vaughan TG, Kühnert D, Popinga A, Welch D, Drummond AJ 2014. Efficient Bayesian inference under the structured coalescent. Bioinformatics 30:162272–79
    [Google Scholar]
  139. Volz EM. 2012. Complex population dynamics and the coalescent under neutrality. Genetics 190:1187–201
    [Google Scholar]
  140. Wang L, Bouchard-Côté A, Doucet A. 2015. Bayesian phylogenetic inference using a combinatorial sequential Monte Carlo method. J. Am. Stat. Assoc. 110:5121362–74
    [Google Scholar]
  141. Wang L, Wang S, Bouchard-Côté A. 2020. An annealed sequential Monte Carlo method for Bayesian phylogenetics. Syst. Biol. 69:1155–83
    [Google Scholar]
  142. Ward M, Gibbons C, McAdam P, Van Bunnik B, Girvan E et al. 2014. Time-scaled evolutionary analysis of the transmission and antibiotic resistance dynamics of Staphylococcus aureus clonal complex 398. Appl. Environ. Microbiol. 80:237275–82
    [Google Scholar]
  143. Whidden C, Matsen FA IV. 2015. Quantifying MCMC exploration of phylogenetic tree space. Syst. Biol. 64:3472–91
    [Google Scholar]
  144. Worobey M, Watts TD, McKay RA, Suchard MA, Granade T et al. 2016. 1970s and ‘patient 0’ HIV-1 genomes illuminate early HIV/AIDS history in North America. Nature 539:762798–101
    [Google Scholar]
  145. Yang Z, Rannala B. 1997. Bayesian phylogenetic inference using DNA sequences: a Markov chain Monte Carlo method. Mol. Biol. Evol. 14:7717–24
    [Google Scholar]
  146. Zhang C 2020. Improved variational Bayesian phylogenetic inference with normalizing flows. Advances in Neural Information Processing Systems 33 (NeurIPS 2020) H Larochelle, M Ranzato, R Hadsell, MF Balcan, H Lin N.p.: NeurIPS
    [Google Scholar]
  147. Zhang C, Huelsenbeck JP, Ronquist F. 2020. Using parsimony-guided tree proposals to accelerate convergence in Bayesian phylogenetic inference. Syst. Biol. 69:51016–32
    [Google Scholar]
  148. Zhang C, Matsen FA IV 2018a. Generalizing tree probability estimation via Bayesian networks. Proceedings of the 32nd International Conference on Neural Information Processing Systems S Bengio, HM Wallach, H Larochelle, K Grauman, N Cesa-Bianchi Red Hook, NY: Curran
    [Google Scholar]
  149. Zhang C, Matsen FA IV 2018b. Variational Bayesian phylogenetic inference. Presented at International Conference on Learning Representations May 6–9 New Orleans, LA:
  150. Zhang Z, Nishimura A, Bastide P, Ji X, Payne RP et al. 2021. Large-scale inference of correlation among mixed-type biological traits with phylogenetic multivariate probit models. Ann. Appl. Stat. 15:1230–51
    [Google Scholar]
  151. Zhang Z, Nishimura A, Ji X, Lemey P, Suchard MA. 2022. Hamiltonian zigzag speeds up large-scale learning of direct effects among mixed-type biological traits. arXiv:2201.07291 [stat.ME]
  152. Zhao T, Wang Z, Cumberworth A, Gsponer J, de Freitas N, Bouchard-Côté A. 2016. Bayesian analysis of continuous time Markov chains with application to phylogenetic modeling. Bayesian Anal. 11:41203–37
    [Google Scholar]
  153. Zuckerkandl E, Pauling L. 1962. Molecular Disease, Evolution and Genetic Heterogeneity New York: Academic
/content/journals/10.1146/annurev-statistics-033021-112532
Loading
/content/journals/10.1146/annurev-statistics-033021-112532
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error