1932

Abstract

Introduced more than a half-century ago, Granger causality has become a popular tool for analyzing time series data in many application domains, from economics and finance to genomics and neuroscience. Despite this popularity, the validity of this framework for inferring causal relationships among time series has remained the topic of continuous debate. Moreover, while the original definition was general, limitations in computational tools have constrained the applications of Granger causality to primarily simple bivariate vector autoregressive processes. Starting with a review of early developments and debates, this article discusses recent advances that address various shortcomings of the earlier approaches, from models for high-dimensional time series to more recent developments that account for nonlinear and non-Gaussian observations and allow for subsampled and mixed-frequency time series.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-statistics-040120-010930
2022-03-07
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/statistics/9/1/annurev-statistics-040120-010930.html?itemId=/content/journals/10.1146/annurev-statistics-040120-010930&mimeType=html&fmt=ahah

Literature Cited

  1. Agresti A, Kateri M 2011. Categorical data analysis. International Encyclopedia of Statistical Science M Lovric 206–8 Berlin: Springer
    [Google Scholar]
  2. Ahelegbey DF, Billio M, Casarin R. 2016. Sparse graphical vector autoregression: a Bayesian approach. Ann. Econ. Stat./Ann. d'Écon. Stat. 123–124:333–61
    [Google Scholar]
  3. Ahn SC, Horenstein AR. 2013. Eigenvalue ratio test for the number of factors. Econometrica 81:31203–27
    [Google Scholar]
  4. Aldor-Noiman S, Brown LD, Fox EB, Stine RA 2016. Spatio-temporal low count processes with application to violent crime events. Stat. Sin. 26:1587–610
    [Google Scholar]
  5. Amblard PO, Michel OJ. 2011. On directed information theory and Granger causality graphs. J. Comput. Neurosci. 30:17–16
    [Google Scholar]
  6. Amengual D, Watson MW. 2007. Consistent estimation of the number of dynamic factors in a large N and T panel. J. Bus. Econ. Stat. 25:191–96
    [Google Scholar]
  7. Anderson BD, Deistler M, Felsenstein E, Funovits B, Koelbl L, Zamani M. 2016. Multivariate AR systems and mixed-frequency data: G-identifiability and estimation. Econom. Theory 32:4793–826
    [Google Scholar]
  8. Bai P, Safikhani A, Michailidis G. 2020. Multiple change points detection in low rank and sparse high dimensional vector autoregressive models. IEEE Trans. Signal Proc. 68:3074–89
    [Google Scholar]
  9. Bańbura M, Giannone D, Reichlin L. 2010. Large Bayesian vector auto regressions. J. Appl. Econom. 25:171–92
    [Google Scholar]
  10. Basu S, Li X, Michailidis G 2019. Low rank and structured modeling of high-dimensional vector autoregressions. IEEE Trans. Signal Proc. 67:51207–22
    [Google Scholar]
  11. Basu S, Michailidis G. 2015. Regularized estimation in sparse high-dimensional time series models. Ann. Stat. 43:41535–67
    [Google Scholar]
  12. Basu S, Shojaie A, Michailidis G. 2015. Network Granger causality with inherent grouping structure. J. Mach. Learn. Res. 16:1417–53
    [Google Scholar]
  13. Bauwens L, Laurent S, Rombouts JVK 2006. Multivariate GARCH models: a survey. J. Appl. Econom. 21:179–109
    [Google Scholar]
  14. Belviso F, Milani F. 2006. Structural factor-augmented VARs (SFAVARs) and the effects of monetary policy. BE J. Macroecon. 6:31–46
    [Google Scholar]
  15. Berchtold A. 2001. Estimation in the mixture transition distribution model. J. Time Ser. Anal. 22:4379–97
    [Google Scholar]
  16. Berchtold A, Raftery A 2002. The mixture transition distribution model for high-order Markov chains and non-Gaussian time series. Stat. Sci. 17:3328–56
    [Google Scholar]
  17. Bergmann TO, Hartwigsen G. 2021. Inferring causality from noninvasive brain stimulation in cognitive neuroscience. J. Cogn. Neurosci. 33:2195–225
    [Google Scholar]
  18. Bernanke BS, Blinder AS. 1992. The federal funds rate and the channels of monetary transmission. Am. Econ. Rev. 82:4901–21
    [Google Scholar]
  19. Bernanke BS, Boivin J, Eliasz P. 2005. Measuring the effects of monetary policy: a factor-augmented vector autoregressive (FAVAR) approach. Q. J. Econ. 120:1387–422
    [Google Scholar]
  20. Bernanke BS, Kuttner KN. 2005. What explains the stock market's reaction to Federal Reserve policy?. J. Finance 60:31221–57
    [Google Scholar]
  21. Billings SA. 2013. Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains New York: Wiley
    [Google Scholar]
  22. Billings SA, Chen S 1996. The determination of multivariable nonlinear models for dynamic systems using neural networks. Neural Network Systems Techniques and Applications C Leondes 231–78 Cambridge, MA: Academic
    [Google Scholar]
  23. Billio M, Casarin R, Rossini L. 2019. Bayesian nonparametric sparse VAR models. J. Econom. 212:197–115
    [Google Scholar]
  24. Boot JC, Feibes W, Lisman JHC 1967. Further methods of derivation of quarterly figures from annual data. J. R. Stat. Soc. Ser. C 16:65–75
    [Google Scholar]
  25. Boyd S, Vandenberghe L. 2004. Convex Optimization Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  26. Breitung J, Swanson NR. 2002. Temporal aggregation and spurious instantaneous causality in multiple time series models. J. Time Ser. Anal. 23:6651–65
    [Google Scholar]
  27. Bressler SL, Seth AK. 2011. Wiener–Granger causality: a well established methodology. Neuroimage 58:2323–29
    [Google Scholar]
  28. Chamberlain G. 1982. The general equivalence of Granger and Sims causality. Econometrica 50:569–81
    [Google Scholar]
  29. Chen B, Zadrozny PA 1998. An extended Yule-Walker method for estimating a vector autoregressive model with mixed-frequency data. Adv. Econom. 13:47–74
    [Google Scholar]
  30. Chen S, Shojaie A, Shea-Brown E, Witten D. 2017a. The multivariate Hawkes process in high dimensions: beyond mutual excitation. arXiv:1707.04928 [stat.ME]
  31. Chen S, Shojaie A, Witten DM. 2017b. Network reconstruction from high-dimensional ordinary differential equations. J. Am. Stat. Assoc. 112:5201697–707
    [Google Scholar]
  32. Chen S, Witten D, Shojaie A 2017c. Nearly assumptionless screening for the mutually-exciting multivariate Hawkes process. Electron. J. Stat. 11:11207
    [Google Scholar]
  33. Ching W, Fung ES, Ng MK. 2002. A multivariate Markov chain model for categorical data sequences and its applications in demand predictions. IMA J. Manag. Math. 13:3187–99
    [Google Scholar]
  34. Chiou-Wei SZ, Chen CF, Zhu Z. 2008. Economic growth and energy consumption revisited—evidence from linear and nonlinear Granger causality. Energy Econ. 30:63063–76
    [Google Scholar]
  35. Chu SR, Shoureshi R, Tenorio M. 1990. Neural networks for system identification. IEEE Control Syst. Mag. 10:331–35
    [Google Scholar]
  36. Chudik A, Pesaran MH. 2011. Infinite-dimensional VARs and factor models. J. Econom. 163:14–22
    [Google Scholar]
  37. Cox LATJ, Popken DA. 2015. Has reducing fine particulate matter and ozone caused reduced mortality rates in the United States?. Ann. Epidemiol. 25:3162–73
    [Google Scholar]
  38. Cromwell JB, Terraza M. 1994. Multivariate Tests for Time Series Models Thousand Oaks, CA: SAGE
    [Google Scholar]
  39. Danks D, Plis S. 2013. Learning causal structure from undersampled time series Presented at NIPS 2013 Workshop on Causality Lake Tahoe, NV: Dec. 9
    [Google Scholar]
  40. Davis RA, Zang P, Zheng T. 2016. Sparse vector autoregressive modeling. J. Comput. Graph. Stat. 25:41077–96
    [Google Scholar]
  41. Dhamala M, Rangarajan G, Ding M 2008. Estimating Granger causality from Fourier and wavelet transforms of time series data. Phys. Rev. Lett. 100:1018701
    [Google Scholar]
  42. Doshi-Velez F, Wingate D, Tenenbaum J, Roy N 2011. Infinite dynamic Bayesian networks. ICML'11: Proceedings of the 28th International Conference on Machine Learning L Getoor, T Scheffer 913–20 Madison, WI: Omnipress
    [Google Scholar]
  43. Eichler M. 2007. Granger causality and path diagrams for multivariate time series. J. Econom. 137:2334–53
    [Google Scholar]
  44. Eichler M. 2012. Graphical modelling of multivariate time series. Probab. Theory Relat. Fields 153:1–2233–68
    [Google Scholar]
  45. Eichler M, Dahlhaus R, Dueck J. 2017. Graphical modeling for multivariate Hawkes processes with nonparametric link functions. J. Time Ser. Anal. 38:2225–42
    [Google Scholar]
  46. Etzel N, Shojaie A. 2016. ngc: penalized estimation and visualization for network Granger causality. R Package. https://github.com/shojaie/ngc
    [Google Scholar]
  47. Florens JP, Mouchart M. 1982. A note on noncausality. Econom. J. Econom. Soc. 50:583–91
    [Google Scholar]
  48. Fox E, Sudderth EB, Jordan MI, Willsky AS 2011. Bayesian nonparametric inference of switching dynamic linear models. IEEE Trans. Signal Proc. 59:41569–85
    [Google Scholar]
  49. Fujita A, Sato JR, Garay-Malpartida HM, Yamaguchi R, Miyano S et al. 2007. Modeling gene expression regulatory networks with the sparse vector autoregressive model. BMC Syst. Biol. 1:39
    [Google Scholar]
  50. George EI, Sun D, Ni S 2008. Bayesian stochastic search for VAR model restrictions. J. Econom. 142:1553–80
    [Google Scholar]
  51. Geweke J. 1982. Measurement of linear dependence and feedback between multiple time series. J. Am. Stat. Assoc. 77:378304–13
    [Google Scholar]
  52. Ghahramani Z 1997. Learning dynamic Bayesian networks. International School on Neural Networks, Initiated by IIASS and EMFCSC CL Giles, M Gori 168–97 New York: Springer
    [Google Scholar]
  53. Ghosh S, Khare K, Michailidis G 2019. High-dimensional posterior consistency in Bayesian vector autoregressive models. J. Am. Stat. Assoc. 114:526735–48
    [Google Scholar]
  54. Glymour C, Zhang K, Spirtes P. 2019. Review of causal discovery methods based on graphical models. Front. Genet. 10:524
    [Google Scholar]
  55. Gong M, Zhang K, Schölkopf B, Tao D, Geiger P. 2015. Discovering temporal causal relations from subsampled data. Proc. Mach. Learn. Res. 37:1898–1906
    [Google Scholar]
  56. Granger CWJ. 1969. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37:424–38
    [Google Scholar]
  57. Granger CWJ. 1980. Testing for causality: a personal viewpoint. J. Econ. Dyn. Control 2:329–52
    [Google Scholar]
  58. Granger CWJ. 1988. Some recent development in a concept of causality. J. Econom. 39:1–2199–211
    [Google Scholar]
  59. Granger S. 2001. Social engineering fundamentals, part I: hacker tactics. Security Focus, Dec. 18
    [Google Scholar]
  60. Graves A. 2012. Supervised Sequence Labelling with Recurrent Neural Networks New York: Springer
    [Google Scholar]
  61. Hall EC, Raskutti G, Willett R 2016. Inference of high-dimensional autoregressive generalized linear models. arXiv:1605.02693 [stat.ML]
  62. Hansen NR, Reynaud-Bouret P, Rivoirard V et al. 2015. Lasso and probabilistic inequalities for multivariate point processes. Bernoulli 21:183–143
    [Google Scholar]
  63. Haslbeck JM, Waldorp LJ. 2020. mgm: Estimating time-varying mixed graphical models in high-dimensional data. J. Stat. Softw. 93:8 https://doi.org/10.18637/jss.v093.i08
    [Crossref] [Google Scholar]
  64. Henderson J, Michailidis G. 2014. Network reconstruction using nonparametric additive ODE models. PLOS ONE 9:4e94003
    [Google Scholar]
  65. Holland PW. 1986. Statistics and causal inference. J. Am. Stat. Assoc. 81:396945–60
    [Google Scholar]
  66. Hong Y, Liu Y, Wang S. 2009. Granger causality in risk and detection of extreme risk spillover between financial markets. J. Econom. 150:2271–87
    [Google Scholar]
  67. Huang J, Zhang T, Metaxas D. 2011. Learning with structured sparsity. J. Mach. Learn. Res. 12:Nov.3371–412
    [Google Scholar]
  68. Hyttinen A, Plis S, Järvisalo M, Eberhardt F, Danks D. 2016. Causal discovery from subsampled time series data by constraint optimization. arXiv:1602.07970 [cs.AI]
  69. Hyvärinen A, Zhang K, Shimizu S, Hoyer PO 2010. Estimation of a structural vector autoregression model using non-Gaussianity. J. Mach. Learn. Res. 11:1709–31
    [Google Scholar]
  70. Kilian L 2013. Structural vector autoregressions. Handbook of Research Methods and Applications in Empirical Macroeconomics N Hashimzade 515–54 Cheltenham, UK: Edward Elgar
    [Google Scholar]
  71. Kilian L, Lütkepohl H. 2017. Structural Vector Autoregressive Analysis Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  72. Kim S, Xing EP. 2010. Tree-guided group lasso for multi-task regression with structured sparsity. ICML'10: Proceedings of the 27th International Conference on Machine Learning J Fürnkranz, T Joachims 543–50 Madison, WI: Omnipress
    [Google Scholar]
  73. Kişi Ö. 2004. River flow modeling using artificial neural networks. J. Hydrol. Eng. 9:160–63
    [Google Scholar]
  74. Kontoyiannis I, Skoularidou M. 2016. Estimating the directed information and testing for causality. IEEE Trans. Inform. Theory 62:116053–67
    [Google Scholar]
  75. Lanne M, Meitz M, Saikkonen P. 2017. Identification and estimation of non-Gaussian structural vector autoregressions. J. Econom. 196:2288–304
    [Google Scholar]
  76. Leeper EM, Sims CA, Zha T, Hall RE, Bernanke BS. 1996. What does monetary policy do?. Brookings Pap. Econ. Activ. 1996:21–78
    [Google Scholar]
  77. Li Y, Yu R, Shahabi C, Liu Y. 2017. Diffusion convolutional recurrent neural network: data-driven traffic forecasting. arXiv:1707.01926 [cs.LG]
  78. Litterman RB. 1986. Forecasting with Bayesian vector autoregressions—five years of experience. J. Bus. Econ. Stat. 4:125–38
    [Google Scholar]
  79. Lozano AC, Abe N, Liu Y, Rosset S 2009. Grouped graphical Granger modeling for gene expression regulatory networks discovery. Bioinformatics 25:12i110–18
    [Google Scholar]
  80. Lusch B, Maia PD, Kutz JN 2016. Inferring connectivity in networked dynamical systems: challenges using Granger causality. Phys. Rev. E 94:3032220
    [Google Scholar]
  81. Lütkepohl H. 1982. Non-causality due to omitted variables. J. Econom. 19:2–3367–78
    [Google Scholar]
  82. Lütkepohl H. 2005. New Introduction to Multiple Time Series Analysis New York: Springer
    [Google Scholar]
  83. Maziarz M. 2015. A review of the Granger-causality fallacy. J. Philos. Econ. 8:286–105
    [Google Scholar]
  84. McCullagh P, Nelder JA. 1989. Generalized Linear Models Boca Raton, FL: Chapman and Hall/CRC
    [Google Scholar]
  85. McKenzie E. 2003. Discrete variate time series. Handb. Stat. 21:573–606
    [Google Scholar]
  86. Moauro F, Savio G. 2005. Temporal disaggregation using multivariate structural time series models. Econom. J. 8:2214–34
    [Google Scholar]
  87. Mosedale TJ, Stephenson DB, Collins M, Mills TC 2006. Granger causality of coupled climate processes: ocean feedback on the North Atlantic Oscillation. J. Climate 19:71182–94
    [Google Scholar]
  88. Nakajima J, West M. 2013. Bayesian analysis of latent threshold dynamic models. J. Bus. Econ. Stat. 31:2151–64
    [Google Scholar]
  89. Neykov M, Ning Y, Liu JS, Liu H et al. 2018. A unified theory of confidence regions and testing for high-dimensional estimating equations. Stat. Sci. 33:3427–43
    [Google Scholar]
  90. Nicholson W, Matteson D, Bien J. 2017a. BigVAR: tools for modeling sparse high-dimensional multivariate time series. arXiv:1702.07094 [stat.CO]
  91. Nicholson WB, Matteson DS, Bien J. 2017b. VARX-L: structured regularization for large vector autoregressions with exogenous variables. Int. J. Forecast. 33:3627–51
    [Google Scholar]
  92. Nicolau J. 2014. A new model for multivariate Markov chains. Scand. J. Stat. 41:41124–35
    [Google Scholar]
  93. Noble NR, Fields TW. 1983. Sunspots and cycles: comment. South. Econ. J. 50:251–54
    [Google Scholar]
  94. Onatski A. 2010. Determining the number of factors from empirical distribution of eigenvalues. Rev. Econ. Stat. 92:41004–16
    [Google Scholar]
  95. Pfaff B. 2008. VAR, SVAR and SVEC models: implementation within R package vars. J. Stat. Softw. 27:41–32
    [Google Scholar]
  96. Plis S, Danks D, Freeman C, Calhoun V 2015. Rate-agnostic (causal) structure learning. Advances in Neural Information Processing Systems C Cortes, N Lawrence, D Lee, M Sugiyama, R Garnett 3285–93 N.p.: NeurIPS
    [Google Scholar]
  97. Qiu H, Xu S, Han F, Liu H, Caffo B. 2015. Robust estimation of transition matrices in high dimensional heavy-tailed vector autoregressive processes. JMLR Worksh. Conf. Proc. 37:1843–51
    [Google Scholar]
  98. Quinn CJ, Kiyavash N, Coleman TP. 2015. Directed information graphs. IEEE Trans. Inform. Theory 61:126887–909
    [Google Scholar]
  99. Raftery AE. 1985. A model for high-order Markov chains. J. R. Stat. Soc. Ser. B 47:3528–39
    [Google Scholar]
  100. Raissi M, Perdikaris P, Karniadakis GE. 2018. Multistep neural networks for data-driven discovery of nonlinear dynamical systems. arXiv:1801.01236 [math.DS]
  101. Reid AT, Headley DB, Mill RD, Sanchez-Romero R, Uddin LQ et al. 2019. Advancing functional connectivity research from association to causation. Nat. Neurosci. 22:111751–60
    [Google Scholar]
  102. Runge J, Heitzig J, Petoukhov V, Kurths J 2012. Escaping the curse of dimensionality in estimating multivariate transfer entropy. Phys. Rev. Lett. 108:25258701
    [Google Scholar]
  103. Safikhani A, Shojaie A. 2020. Joint structural break detection and parameter estimation in high-dimensional nonstationary VAR models. J. Am. Stat. Assoc. https://doi.org/10.1080/01621459.2020.1770097
    [Crossref] [Google Scholar]
  104. Schorfheide F, Song D. 2015. Real-time forecasting with a mixed-frequency VAR. J. Bus. Econ. Stat. 33:3366–80
    [Google Scholar]
  105. Seth AK, Barrett AB, Barnett L. 2015. Granger causality analysis in neuroscience and neuroimaging. J. Neurosci. 35:83293–97
    [Google Scholar]
  106. Sheehan RG, Grieves R. 1982. Sunspots and cycles: a test of causation. South. Econ. J. 48:775–77
    [Google Scholar]
  107. Shojaie A, Basu S, Michailidis G. 2012. Adaptive thresholding for reconstructing regulatory networks from time-course gene expression data. Stat. Biosci. 4:166–83
    [Google Scholar]
  108. Shojaie A, Michailidis G. 2010. Discovering graphical Granger causality using the truncating lasso penalty. Bioinformatics 26:18i517–23
    [Google Scholar]
  109. Silvestrini A, Veredas D. 2008. Temporal aggregation of univariate and multivariate time series models: A survey. J. Econ. Surv. 22:3458–97
    [Google Scholar]
  110. Sims CA. 1972. Money, income, and causality. Am. Econ. Rev. 62:4540–52
    [Google Scholar]
  111. Sims CA. 1980. Macroeconomics and reality. Econom. J. Econom. Soc. 48:1–48
    [Google Scholar]
  112. Song S, Bickel PJ. 2011. Large vector auto regressions. arXiv:1106.3915 [stat.ML]
  113. Stock JH, Watson M. 2011. Dynamic factor models. Oxford Handb. Online https://dx.doi.org/10.1093/oxfordhb/9780195398649.013.0003
    [Crossref] [Google Scholar]
  114. Stokes PA, Purdon PL. 2017. A study of problems encountered in Granger causality analysis from a neuroscience perspective. PNAS 114:34E7063–72
    [Google Scholar]
  115. Stram DO, Wei WW. 1986. A methodological note on the disaggregation of time series totals. J. Time Ser. Anal. 7:4293–302
    [Google Scholar]
  116. Tank A, Covert I, Foti N, Shojaie A, Fox EB. 2021a. Neural Granger causality. IEEE Trans. Pattern Anal. Mach. Intel. In press. https://doi.ieeecomputersociety.org/10.1109/TPAMI.2021.3065601
    [Google Scholar]
  117. Tank A, Fox EB, Shojaie A. 2019. Identifiability and estimation of structural vector autoregressive models for subsampled and mixed-frequency time series. Biometrika 106:2433–52
    [Google Scholar]
  118. Tank A, Li X, Fox E, Shojaie A. 2021b. The convex mixture distribution: Granger causality for categorical time series. SIAM J. Math. Data Sci. 3:183–112
    [Google Scholar]
  119. Tao Y, Ma L, Zhang W, Liu J, Liu W, Du Q. 2018. Hierarchical attention-based recurrent highway networks for time series prediction. arXiv:1806.00685 [cs.LG]
  120. Teräsvirta T, Tjøstheim D, Granger CWJ. 2010. Modelling Nonlinear Economic Time Series Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  121. Tibshirani R. 1996. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 58:1267–88
    [Google Scholar]
  122. Tong H. 2011. Nonlinear time series analysis. Encyclopedia of Mathematics Berlin: EMS. http://encyclopediaofmath.org/index.php?title=Nonlinear_time_series_analysis&oldid=37777
    [Google Scholar]
  123. Vicente R, Wibral M, Lindner M, Pipa G. 2011. Transfer entropy—a model-free measure of effective connectivity for the neurosciences. J. Comput. Neurosci. 30:145–67
    [Google Scholar]
  124. Wang X, Kolar M, Shojaie A. 2020. Statistical inference for networks of high-dimensional point processes. arXiv:2007.07448 [stat.ML]
  125. Weiß CH. 2018. An Introduction to Discrete-Valued Time Series New York: Wiley
    [Google Scholar]
  126. Wu H, Lu T, Xue H, Liang H. 2014. Sparse additive ordinary differential equations for dynamic gene regulatory network modeling. J. Am. Stat. Assoc. 109:506700–16
    [Google Scholar]
  127. Xu H, Farajtabar M, Zha H. 2016. Learning Granger causality for Hawkes processes. Proc. Mach. Learn. Res. 48:1717–26
    [Google Scholar]
  128. Yu R, Zheng S, Anandkumar A, Yue Y. 2017. Long-term forecasting using tensor-train RNNs. arXiv:1711.00073 [cs.LG]
  129. Yuan M, Lin Y. 2006. Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B 68:149–67
    [Google Scholar]
  130. Zadrozny PA. 2016. Extended Yule-Walker identification of VARMA models with single or mixed-frequency data. J. Econom. 193:2438–46
    [Google Scholar]
  131. Zhang GP. 2003. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50:159–75
    [Google Scholar]
  132. Zheng L, Raskutti G. 2019. Testing for high-dimensional network parameters in auto-regressive models. Electron. J. Stat. 13:24977–5043
    [Google Scholar]
  133. Zhou D, Zhang Y, Xiao Y, Cai D 2014. Analysis of sampling artifacts on the Granger causality analysis for topology extraction of neuronal dynamics. Front. Comput. Neurosci. 8:75
    [Google Scholar]
  134. Zhou K, Zha H, Song L. 2013. Learning social infectivity in sparse low-rank networks using multi-dimensional Hawkes processes. Proc. Mach. Learn. Res. 31:641–49
    [Google Scholar]
  135. Zhu D, Ching W. 2010. A new estimation method for multivariate Markov chain model with application in demand predictions. BIFE '10: Proceedings of the 2010 Third International Conference on Business Intelligence and Financial Engineering126–30 Washington, DC: IEEE
    [Google Scholar]
  136. Zhu K, Liu H. 2020. Confidence intervals for parameters in high-dimensional sparse vector autoregression. arXiv:2009.09462 [stat.ME]
/content/journals/10.1146/annurev-statistics-040120-010930
Loading
/content/journals/10.1146/annurev-statistics-040120-010930
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error