1932

Abstract

The construction of score-driven filters for nonlinear time series models is described, and they are shown to apply over a wide range of disciplines. Their theoretical and practical advantages over other methods are highlighted. Topics covered include robust time series modeling, conditional heteroscedasticity, count data, dynamic correlation and association, censoring, circular data, and switching regimes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-statistics-040120-021023
2022-03-07
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/statistics/9/1/annurev-statistics-040120-021023.html?itemId=/content/journals/10.1146/annurev-statistics-040120-021023&mimeType=html&fmt=ahah

Literature Cited

  1. Adrian T, Rosenberg J 2008. Stock returns and volatility: pricing short-run and long-run components of market risk. J. Finance 63:2997–3030
    [Google Scholar]
  2. Alizadeh S, Brandt MW, Diebold FX. 2002. Range-based estimation of stochastic volatility models. J. Finance 62:1047–91
    [Google Scholar]
  3. Ardia D, Boudt K, Catania L. 2019. Generalized autoregressive score models in R: the GAS package. J. Stat. Softw. 88:6). http://dx.doi.org/10.18637/jss.v088.i06
    [Google Scholar]
  4. Bernardi M, Catania L. 2019. Switching generalized autoregressive score copula models with application to systemic risk. J. Appl. Econom. 34:43–65
    [Google Scholar]
  5. Blasques F, Gorgi P, Koopman SJ. 2019. Accelerating score-driven time series models. J. Econom. 212:359–76
    [Google Scholar]
  6. Blasques F, Gorgi P, Koopman SJ. 2021. Missing observations in observation-driven time series models. J. Econom. 221:542–68
    [Google Scholar]
  7. Blasques F, Gorgi P, Koopman SJ, Wintenberger O. 2018. Feasible invertibility conditions and maximum likelihood estimation for observation-driven models. Electron. J. Stat. 12:1019–52
    [Google Scholar]
  8. Blasques F, Koopman SJ, Lucas A, Schaumburg J 2016. Spillover dynamics for systemic risk measurement using spatial financial time series models. J. Econom. 195:211–23
    [Google Scholar]
  9. Bollerslev T. 1987. A conditionally heteroskedastic time series model for security prices and rates of return data. Rev. Econ. Stat. 59:542–47
    [Google Scholar]
  10. Bollerslev T, Engle RF, Nelson DB 1994. ARCH models. Handbook of Econometrics Vol. 4 RF Engle, DL McFadden 2959–3038 Amsterdam: North-Holland
    [Google Scholar]
  11. Breckling J. 1989. The Analysis of Directional Time Series: Applications to Wind Speed and Direction Berlin: Springer
    [Google Scholar]
  12. Caivano M, Harvey AC. 2014. Time series models with an EGB2 conditional distribution. J. Time Ser. Anal. 34:558–71
    [Google Scholar]
  13. Caivano M, Harvey AC, Luati A. 2016. Robust time series models with trend and seasonal components. SERIEs 7:99–120
    [Google Scholar]
  14. Calvori F, Creal D, Koopman SJ, Lucas A. 2017. Testing for parameter instability in competing modeling frameworks. J. Financ. Econom. 15:223–46
    [Google Scholar]
  15. Catania L. 2021. Dynamic adaptive mixture models with an application to volatility and risk. J. Financ. Econom. 19:53164
    [Google Scholar]
  16. Catania L, Billé AG. 2017. Dynamic spatial autoregressive models with autoregressive and heteroskedastic disturbances. J. Appl. Econom. 32:1178–96
    [Google Scholar]
  17. Catania L, Nonejad N. 2020. Density forecasts and the leverage effect: evidence from observation and parameter-driven volatility models. Eur. J. Finance 26:100–18
    [Google Scholar]
  18. Cox DR. 1981. Statistical analysis of time series: some recent developments. Scand. . J. Stat. 8:93–105
    [Google Scholar]
  19. Creal D, Koopman SJ, Lucas A. 2011. A dynamic multivariate heavy-tailed model for time-varying volatilities and correlations. J. Bus. Econ. Stat. 29:552–63
    [Google Scholar]
  20. Creal D, Koopman SJ, Lucas A. 2013. Generalized autoregressive score models with applications. J. Appl. Econom. 28:777–95
    [Google Scholar]
  21. De Lira Salvatierra I, Patton AJ. 2015. Dynamic copula models and high frequency data. J. Empir. Finance 30:120–35
    [Google Scholar]
  22. Delle Monache D, Petrella I. 2017. Adaptive models and heavy tails with an application to inflation forecasting. Int. J. Forecast. 33:482–501
    [Google Scholar]
  23. De Rossi G, Harvey AC. 2009. Quantiles, expectiles and splines. J. Econom. 152:179–85
    [Google Scholar]
  24. Durbin J, Koopman SJ. 2012. Time Series Analysis by State Space Methods Oxford, UK: Oxford Univ. Press. , 2nd ed..
    [Google Scholar]
  25. Embrechts P, Kluppelberg C, Mikosch T. 1997. Modelling Extremal Events Berlin: Springer-Verlag
    [Google Scholar]
  26. Engle RF, Lilien DM, Robins RP. 1987. Estimating time varying risk premia in the term structure: The ARCH-M model. Econometrica 55:391–407
    [Google Scholar]
  27. Engle RF, Manganelli S. 2004. CAViaR: conditional autoregressive value at risk by regression quantiles. J. Bus. Econ. Stat. 22:367–81
    [Google Scholar]
  28. Fisher NI, Lee AJ. 1994. Time series analysis of circular data. J. R. Stat. Soc. B 70:327–32
    [Google Scholar]
  29. Glosten LR, Jagannathan R, Runkle DE 1993. On the relation between the expected value and the volatility of the nominal excess return on stocks. J. Finance 48:1779–801
    [Google Scholar]
  30. Gorgi P. 2020. Beta-negative binomial auto-regressions for modelling integer-valued time series with extreme observations. J. R. Stat. Soc. B. 82:1325–47
    [Google Scholar]
  31. Gorgi P, Hansen PR, Janus P, Koopman SJ 2019. Realized Wishart-GARCH: a score-driven multi-asset volatility model. J. Financ. Econom. 17:1–32
    [Google Scholar]
  32. Hamilton J. 1989. A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica 57:357–84
    [Google Scholar]
  33. Harvey AC. 2013. Dynamic Models for Volatility and Heavy Tails: With Applications to Financial and Economic Time Series Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  34. Harvey AC, Hurn S, Thiele S. 2019. Modeling directional (circular) time series. Cambridge Work. Pap. Econ. 1971. Faculty Econ., Cambridge Univ.
    [Google Scholar]
  35. Harvey AC, Ito R. 2019. Modeling time series when some observations are zero. J. Econom. 214:33–45
    [Google Scholar]
  36. Harvey AC, Kattuman P. 2020. Time series models based on growth curves with applications to forecasting coronavirus. Harv. Data Sci. Rev. https://doi.org/10.1162/99608f92.828f40de
    [Crossref] [Google Scholar]
  37. Harvey AC, Lange R-J. 2017. Volatility modelling with a generalized t-distribution. J. Time Ser. Anal. 38:175–90
    [Google Scholar]
  38. Harvey AC, Lange R-J. 2018. Modelling the interactions between volatility and returns. J. Time Ser. Anal. 39:909–19
    [Google Scholar]
  39. Harvey AC, Liao Y. 2021. Dynamic Tobit models. Econom. Stat. https://doi.org/10.1016/j.ecosta.2021.08.012. In press
    [Crossref] [Google Scholar]
  40. Harvey AC, Luati A. 2014. Filtering with heavy tails. J. Am. Stat. Assoc. 109:1112–22
    [Google Scholar]
  41. Harvey AC, Oryshchenko V. 2011. Kernel density estimation for time series data. Int. J. Forecast. 28:3–14
    [Google Scholar]
  42. Harvey AC, Palumbo D. 2021. Regime switching models for directional and linear observations Cambridge Work. Pap. Econ. 2123 Faculty Econ.: Cambridge Univ.
    [Google Scholar]
  43. Harvey AC, Thiele S. 2016. Testing against changing correlation. J. Empir. Finance 38:575–89
    [Google Scholar]
  44. Janus P, Koopman SJ, Lucas A 2014. Long memory dynamics for multivariate dependence under heavy tails. J. Empir. Finance 29:187–206
    [Google Scholar]
  45. Kleiber C, Kotz S. 2003. Statistical Size Distributions in Economics and Actuarial Sciences New York: Wiley
    [Google Scholar]
  46. Koopman SJ, Lit R. 2019. Forecasting football match results in national league competitions using score-driven time series models. Int. J. Forecast. 35:797–809
    [Google Scholar]
  47. Koopman SJ, Lit R, Harvey AC. 2021. STAMP 9.00. Structural Time Series Analyser, Modeller and Predictor London: Timberlake Consultants Ltd.
    [Google Scholar]
  48. Koopman SJ, Lucas A, Scharth M 2016. Predicting time-varying parameters with parameter-driven and observation-driven models. Rev. Econ. Stat. 98:97–110
    [Google Scholar]
  49. Lange KL, Little RA, Taylor JMG. 1989. Robust statistical modeling using the t-distribution. J. Am. Stat. Assoc. 84:881–96
    [Google Scholar]
  50. Lewis RA, McDonald JB. 2014. Partially adaptive estimation of censored regression models. Econom. Rev. 33:732–50
    [Google Scholar]
  51. Lit R, Koopman SJ, Harvey AC. 2021. Time series lab. Statistical Software version 1.5. https://timeserieslab.com
    [Google Scholar]
  52. Lucas A, Bernd S, Zhang X 2017. Modeling financial sector tail risk in the Euro area. J. Appl. Econom. 32:171–91
    [Google Scholar]
  53. Maronna R, Martin D, Yohai V. 2006. Robust Statistics: Theory and Methods Chichester, UK: John Wiley & Sons Ltd.
    [Google Scholar]
  54. McDonald JB, Newey WK. 1988. Partially adaptive estimation of regression models via the generalized t distribution. Econom. Theory 4:428–57
    [Google Scholar]
  55. McNeil SJ, Frey R, Embrechts P. 2005. Quantitative Risk Management Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  56. Nelson DB. 1991. Conditional heteroskedasticity in asset returns: a new approach. Econometrica 59:347–70
    [Google Scholar]
  57. Oh DH, Patton A. 2018. Time-varying systemic risk: evidence from a dynamic copula model of CDS spreads. J. Bus. Econ. Stat. 36:181–95
    [Google Scholar]
  58. Opschoor A, Janus P, Lucas A, van Dijk DJ. 2018. New HEAVY models for fat-tailed realized covariances and returns. J. Bus. Econ. Stat. 36:643–57
    [Google Scholar]
  59. Opschoor A, Lucas A. 2021. Observation-driven models for realized variances and overnight returns applied to value-at-risk and expected shortfall forecasting. Int. J. Forecast. 37:622–37
    [Google Scholar]
  60. Patton AJ 2013. Copula methods for forecasting multivariate time series. Handbook of Economic Forecasting, Vol. 2 G Elliot, A Timmermann 899–960 Amsterdam: North-Holland
    [Google Scholar]
  61. Patton AJ, Ziegel JF, Chen R. 2019. Dynamic semiparametric models for expected shortfall (and value-at-risk). J. Econom. 21:388–413
    [Google Scholar]
  62. Zeger SL, Brookmeyer R. 1986. Regression analysis with censored autocorrelated data. J. Am. Stat. Assoc. 81:722–29
    [Google Scholar]
  63. Zucchini W, MacDonald IL, Langrock R. 2016. Hidden Markov Models for Time Series: An Introduction Using R Boca Raton, FL: CRC
    [Google Scholar]
/content/journals/10.1146/annurev-statistics-040120-021023
Loading
/content/journals/10.1146/annurev-statistics-040120-021023
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error