1932

Abstract

Familial aggregation refers to the fact that a particular disease may be overrepresented in some families due to genetic or environmental factors. When studying such phenomena, it is clear that one important aspect is the age of onset of the disease in question, and in addition, the data will typically be right-censored. Therefore, one must apply lifetime data methods to quantify such dependence and to separate it into different sources using polygenic modeling. Another important point is that the occurrence of a particular disease can be prevented by death—that is, competing risks—and therefore, the familial aggregation should be studied in a model that allows for both death and the occurrence of the disease. We here demonstrate how polygenic modeling can be done for both survival data and competing risks data dealing with right-censoring. The competing risks modeling that we focus on is closely related to the liability threshold model.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-statistics-040120-024253
2022-03-07
2024-06-19
Loading full text...

Full text loading...

/deliver/fulltext/statistics/9/1/annurev-statistics-040120-024253.html?itemId=/content/journals/10.1146/annurev-statistics-040120-024253&mimeType=html&fmt=ahah

Literature Cited

  1. Andersen PK, Borgan Ø, Gill RD, Keiding N. 1993. Statistical Models Based on Counting Processes New York: Springer
    [Google Scholar]
  2. Balan TA, Putter H. 2019. frailtyem: an R package for estimating semiparametric shared frailty models. J. Stat. Softw. 90:1–29
    [Google Scholar]
  3. Bandeen-Roche K 2013. Familial studies. Handbook of Survival Analysis JP Klein, H van Houwelingen, J Ibrahim, TH Scheike 549–68 Boca Raton, FL: Chapman and Hall/CRC
    [Google Scholar]
  4. Bandeen-Roche K, Liang KY. 2002. Modelling multivariate failure time associations in the presence of a competing risk. Biometrika 89:299–314
    [Google Scholar]
  5. Bandeen-Roche K, Ning J. 2008. Nonparametric estimation of bivariate failure time associations in the presence of a competing risk. Biometrika 95:221–32
    [Google Scholar]
  6. Cederkvist L, Holst K, Andersen K, Scheike T. 2019. Modeling the cumulative incidence function of multivariate competing risks data allowing for within-cluster dependence of risk and timing. Biostatistics 20:199–217
    [Google Scholar]
  7. Chatterjee N, Kalaylioglu Z, Shih JH, H Gail M. 2006. Case–control and case-only designs with genotype and family history data: estimating relative risk, residual familial aggregation, and cumulative risk. Biometrics 62:36–48
    [Google Scholar]
  8. Chen BE, Kramer JL, Greene MH, Rosenberg PS. 2008. Competing risks analysis of correlated failure time data. Biometrics 64:172–79
    [Google Scholar]
  9. Cheng Y, Fine JP. 2012. Cumulative incidence association models for bivariate competing risks data. J. R. Stat. Soc. Ser. B 74:183–202
    [Google Scholar]
  10. Cheng Y, Fine JP, Kosorok MR. 2007. Nonparametric association analysis of bivariate competing-risks data. J. Am. Stat. Assoc. 102:1407–15
    [Google Scholar]
  11. Clayton DG. 1978. A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika 65:141–51
    [Google Scholar]
  12. Diao G, Zeng D 2013. Clustered competing risks. Handbook of Survival Analysis JP Klein, H van Houwelingen, J Ibrahim, TH Scheike 511–22 Boca Raton, FL: Chapman and Hall/CRC
    [Google Scholar]
  13. Dixon S, Darlington G, Desmond A. 2011. A competing risks model for correlated data based on the subdistribution hazard. Lifetime Data Anal. 17:473–95
    [Google Scholar]
  14. Donohue MC, Xu R. 2019. phmm: proportional hazards mixed-effects models. R Package version 0.7–11. https://github.com/mcdonohue/phmm
    [Google Scholar]
  15. Duchateau L, Janssen P. 2007. The Frailty Model New York: Springer
    [Google Scholar]
  16. Ducrocq V, Casella G. 1996. A Bayesian analysis of mixed survival models. Genet. Sel. Evol. 28:505–29
    [Google Scholar]
  17. Eriksson F, Scheike T. 2015. Additive Gamma frailty models with applications to competing risks in related individuals. Biometrics 71:677–86
    [Google Scholar]
  18. Falconer D. 1967. The inheritance of liability to diseases with variable age of onset, with particular reference to diabetes mellitus. Ann. Hum. Genet. 31:1–20
    [Google Scholar]
  19. Falconer D, Mackay T. 1994. Introduction to Quantitative Genetics Boston: Addison-Wesley
    [Google Scholar]
  20. Glidden DV. 1999. Checking the adequacy of the Gamma frailty model for multivariate failure times. Biometrika 86:381–93
    [Google Scholar]
  21. Glidden DV. 2000. A two-stage estimator of the dependence parameter for the Clayton-Oakes model. Lifetime Data Anal. 6:141–56
    [Google Scholar]
  22. Glidden DV, Self S. 1999. Semiparametric likelihood estimation in the Clayton-Oakes failure time model. Scand. J. Stat. 26:363–72
    [Google Scholar]
  23. Hill WG. 2014. Applications of population genetics to animal breeding, from Wright, Fisher and Lush to genomic prediction. Genetics 196:1–16
    [Google Scholar]
  24. Hjelmborg J, Scheike T, Holst K, Skytthe A, Penney K et al. 2014. The heritability of prostate cancer in the Nordic Twin Study of Cancer. Cancer Epidemiol. Biomarkers Prev. 23:2303–10
    [Google Scholar]
  25. Holst KK, Scheike TH, Hjelmborg JB. 2016. The liability threshold model for censored twin data. Comput. Stat. Data Anal. 93:324–35
    [Google Scholar]
  26. Hougaard P. 2000. Analysis of Multivariate Survival Data: Statistics for Biology and Health New York: Springer
    [Google Scholar]
  27. Hu T, Nan B, Lin X, Robins J 2011. Time-dependent cross ratio estimation for bivariate failure times. Biometrika 98:341–54
    [Google Scholar]
  28. Katsahian S, Resche-Rigon M, Chevret S, Porcher R 2006. Analysing multicenter competing risks data with a mixed proportional hazards model for the subdistribution. Stat. Med. 25:4267–78
    [Google Scholar]
  29. Klein J. 1992. Semiparametric estimation of random effects using the Cox model based on the EM algorithm. Biometrics 48:795–806
    [Google Scholar]
  30. Korsgaard IR, Andersen AH. 1998. The additive genetic Gamma frailty model. Scand. J. Stat. 25:225–69
    [Google Scholar]
  31. Korsgaard IR, Andersen AH, Jensen J. 1999. Discussion of heritability of survival traits. Proceedings of the International Workshop of Genetic Improvement of Functional Traits in Cattle: Longevity, Jouy-en-Josas, France31–35 Uppsala, Swed.: Interbull
    [Google Scholar]
  32. Lange K. 2002. Mathematical and Statistical Methods for Genetic Analysis New York: Springer. , 2nd ed..
    [Google Scholar]
  33. Li H. 1999. The additive genetic Gamma frailty model for linkage analysis of age-of-onset variation. Ann. Hum. Genet. 63:455–68
    [Google Scholar]
  34. Lichtenstein P, Holm N, Verkasalo P, Iliadou A, Kaprio J et al. 2000. Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J. Med. 343:78
    [Google Scholar]
  35. Lynch M, Walsh B. 1998. Genetics and Analysis of Quantitative Traits, Vol. 1 Sunderland, MA: Sinauer
    [Google Scholar]
  36. Matthews AG, Finkelstein DM, Betensky RA. 2008. Analysis of familial aggregation studies with complex ascertainment schemes. Stat. Med. 27:5076–92
    [Google Scholar]
  37. Möller S, Mucci L, Harris J, Scheike T, Holst K et al. 2016. The heritability of breast cancer among women in the Nordic Twin Study of Cancer. Cancer Epidemiol. Biomarkers Prev. 25:145–50
    [Google Scholar]
  38. Mucci LA, Hjelmborg JB, Harris JR, Czene K, Havelick DJ et al. 2016. Familial risk and heritability of cancer among twins in Nordic countries. JAMA 315:68–76
    [Google Scholar]
  39. Nan B, Lin X, Lisabeth L, Harlow S 2006. Piecewise constant cross-ratio estimation for association of age at a marker event and age at menopause. J. Am. Stat. Assoc. 101:65–77
    [Google Scholar]
  40. Neale MC, Cardon LR 1992. Methodology for Genetic Studies of Twins and Families Dordrecht, Neth: Kluwer Academic
    [Google Scholar]
  41. Nielsen GG, Gill RD, Andersen PK, Sørensen TIA. 1992. A counting process approach to maximum likelihood estimation in frailty models. Scand. J. Stat. 19:25–43
    [Google Scholar]
  42. Ning J, Bandeen-Roche K. 2014. Estimation of time-dependent association for bivariate failure times in the presence of a competing risk. Biometrics 70:10–20
    [Google Scholar]
  43. Oakes D. 1982. A model for association in bivariate survival data. J. R. Stat. Soc. Ser. B 44:414–22
    [Google Scholar]
  44. Petersen JH. 1998. An additive frailty model for correlated life times. Biometrics 54:646–61
    [Google Scholar]
  45. Petersen JH, Andersen PK, Gill RD. 1996. Variance component models for survival data. Stat. Neerl. 50:191–211
    [Google Scholar]
  46. Ripatti S, Palmgren J. 2000. Estimation of multivariate frailty models using penalized partial likelihood. Biometrics 56:1016–22
    [Google Scholar]
  47. Scheike T, Hjelmborg J, Holst K. 2015a. Estimating twin pair concordance for age of onset. Behav. Genet. 45:573–80
    [Google Scholar]
  48. Scheike T, Holst K, Hjelmborg J. 2014a. Estimating heritability for cause specific mortality based on twin studies. Lifetime Data Anal. 20:210–33
    [Google Scholar]
  49. Scheike T, Holst K, Hjelmborg J. 2014b. Estimating twin concordance for bivariate competing risks twin data. Stat. Med. 33:1193–204
    [Google Scholar]
  50. Scheike T, Holst K, Hjelmborg J. 2015b. Measuring early or late dependence for bivariate lifetimes of twins. Lifetime Data Anal. 21:280–99
    [Google Scholar]
  51. Scheike TH, Sun Y, Zhang MJ, Jensen TK. 2010. A semiparametric random effects model for multivariate competing risks data. Biometrika 97:133–45
    [Google Scholar]
  52. Scheike TH, Zhang MJ, Gerds T. 2008. Predicting cumulative incidence probability by direct binomial regression. Biometrika 95:205–20
    [Google Scholar]
  53. Sham P. 1998. Statistics in Human Genetics. New York: Wiley
    [Google Scholar]
  54. Shih J, Albert P. 2010. Modeling familial association of ages at onset of disease in the presence of competing risk. Biometrics 66:1012–23
    [Google Scholar]
  55. Shih JH, Louis TA. 1995. Inference on association parameter in copula models for bivariate survival data. Biometrics 51:1384–99
    [Google Scholar]
  56. Sørensen K, Juul A, Christensen K, Skytthe A, Scheike T, Jensen TK. 2013. Birth size and age at menarche: a twin perspective. Hum. Reprod. 28:2865–71
    [Google Scholar]
  57. Spiekerman CF, Lin DY. 1998. Marginal regression models for multivariate failure time data. J. Am. Stat. Assoc. 93:1164–75
    [Google Scholar]
  58. Therneau T. 2020. coxme: mixed effects Cox models. R Package, version 2.2-16. https://CRAN.R-project.org/package=coxme
  59. Vaida F, Xu R. 2000. Proportional hazards model with random effects. Stat. Med. 19:3309–24
    [Google Scholar]
  60. Varin C, Reid N, Firth D 2011. An overview of composite likelihood methods. Stat. Sin. 21:5–42
    [Google Scholar]
  61. Wienke A. 2011. Frailty Models in Survival Analysis Boca Raton, FL: Chapman and Hall/CRC
    [Google Scholar]
  62. Witte J, Carlin J, Hopper J 1999. Likelihood-based approach to estimating twin concordance for dichotomous traits. Genet. Epidemiol. 16:290–304
    [Google Scholar]
  63. Yazdi M, Visscher P, Ducrocq V, Thompson R 2002. Heritability, reliability of genetic evaluations and response to selection in proportional hazard models. J. Dairy Sci. 85:1563–77
    [Google Scholar]
/content/journals/10.1146/annurev-statistics-040120-024253
Loading
/content/journals/10.1146/annurev-statistics-040120-024253
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error