1932

Abstract

There is sustained and widespread interest in understanding the limit, if there is any, to the human life span. Apart from its intrinsic and biological interest, changes in survival in old age have implications for the sustainability of social security systems. A central question is whether the endpoint of the underlying lifetime distribution is finite. Recent analyses of data on the oldest human lifetimes have led to competing claims about survival and to some controversy, due in part to incorrect statistical analysis. This article discusses the particularities of such data, outlines correct ways of handling them, and presents suitable models and methods for their analysis. We provide a critical assessment of some earlier work and illustrate the ideas through reanalysis of semisupercentenarian lifetime data. Our analysis suggests that remaining life length after age 109 is exponentially distributed and that any upper limit lies well beyond the highest lifetime yet reliably recorded. Lower limits to 95% confidence intervals for the human life span are about 130 years, and point estimates typically indicate no upper limit at all.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-statistics-040120-025426
2022-03-07
2024-07-23
Loading full text...

Full text loading...

/deliver/fulltext/statistics/9/1/annurev-statistics-040120-025426.html?itemId=/content/journals/10.1146/annurev-statistics-040120-025426&mimeType=html&fmt=ahah

Literature Cited

  1. Aalen OO, Borgan Ø, Gjessing HK. 2008. Survival and Event History Analysis: A Process Point of View New York: Springer-Verlag
    [Google Scholar]
  2. Aarssen K, de Haan L. 1994. On the maximal life span of humans. Math. Popul. Stud. 4:259–81
    [Google Scholar]
  3. Andersen PK, Borgan Ø, Gill RD, Keiding N. 1993. Statistical Models Based on Counting Processes New York: Springer-Verlag
    [Google Scholar]
  4. Bader B, Yan J, Zhang X 2018. Automated threshold selection for extreme value analysis via ordered goodness-of-fit tests with adjustment for false positive rate. Ann. Appl. Stat. 12:310–29
    [Google Scholar]
  5. Barbi E, Lagona F, Marsili M, Vaupel JW, Wachter KW. 2018. The plateau of human mortality: demography of longevity pioneers. Science 360:63961459–61
    [Google Scholar]
  6. Beard RE. 1971. Some aspects of theories of mortality, cause of death analysis, forecasting and stochastic processes. Biological Aspects of Demography W Brass 57–68 London: Taylor & Francis
    [Google Scholar]
  7. Bebbington M, Lai CD, Zitikis R. 2011. Modelling deceleration in senescent mortality. Math. Popul. Stud. 18:18–37
    [Google Scholar]
  8. Beirlant J, Goegebeur Y, Teugels J, Segers JJ 2004. Statistics of Extremes: Theory and Applications New York: Wiley
    [Google Scholar]
  9. Belzile LR, Davison AC, Rootzén H, Zholud D. 2021. Human mortality at extreme age. R. Soc. Open Sci 8202097
    [Google Scholar]
  10. Burger O, Baudisch A, Vaupel JW. 2012. Human mortality improvement in evolutionary context. PNAS 109:4418210–14
    [Google Scholar]
  11. Coles SG. 2001. An Introduction to Statistical Modeling of Extreme Values New York: Springer
    [Google Scholar]
  12. Cournil A, Robine JM, Maier H, Gampe J, Vaupel J 2010. The International Database on Longevity: structure and contents. Supercentenarians H Maier, J Gampe, B Jeune, JW Vaupel, JM Robine 31–40 New York: Springer
    [Google Scholar]
  13. Cox DR, Oakes D. 1984. Analysis of Survival Data London: Chapman & Hall
    [Google Scholar]
  14. Davison AC. 2018.. ` The life of man, solitary, poore, nasty, brutish, and short': discussion of the paper by Rootzén and Zholud. Extremes 21:3365–72
    [Google Scholar]
  15. Davison AC, Smith RL. 1990. Models for exceedances over high thresholds (with discussion). J. R. Stat. Soc. Ser. B 52:3393–442
    [Google Scholar]
  16. de Haan L, Ferreira A. 2006. Extreme Value Theory: An Introduction New York: Springer
    [Google Scholar]
  17. Dempster AP, Laird NM, Rubin DB 1977. Maximum likelihood from incomplete data via the EM algorithm (with discussion). J. R. Stat. Soc. Ser. B 39:1–38
    [Google Scholar]
  18. Dong X, Milholland B, Vijg J 2016. Evidence for a limit to human lifespan. Nature 538:257–59
    [Google Scholar]
  19. Einmahl JJ, Einmahl JHJ, de Haan L. 2019. Limits to human life span through extreme value theory. J. Am. Stat. Assoc. 114:5271075–80
    [Google Scholar]
  20. Embrechts P, Klüppelberg C, Mikosch T. 1997. Modelling Extremal Events for Insurance and Finance New York: Springer
    [Google Scholar]
  21. Fries JF. 1980. Aging, natural death, and the compression of morbidity. N. Engl. J. Med. 303:3130–35
    [Google Scholar]
  22. Gampe J 2010. Human mortality beyond age 110. Supercentenarians H Maier, J Gampe, B Jeune, JW Vaupel, JM Robine 219–30 New York: Springer
    [Google Scholar]
  23. Gavrilova NS, Gavrilov LA. 2020. Are we approaching a biological limit to human longevity?. J. Gerontol. Ser. A 75:1061–67
    [Google Scholar]
  24. Gbari S, Poulain M, Dal L, Denuit M. 2017. Extreme value analysis of mortality at the oldest ages: a case study based on individual ages at death. N. Am. Actuar. J. 21:397–416
    [Google Scholar]
  25. Gompertz B. 1825. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos. Trans. R. Soc. Lond. 115:513–85
    [Google Scholar]
  26. Graunt J. 1662. Natural and Political Observations Made upon the Bills of Mortality London: Thomas Roycroft
    [Google Scholar]
  27. Hanayama N, Sibuya M. 2016. Estimating the upper limit of lifetime probability distribution, based on data of Japanese centenarians. J. Gerontol. Ser. A 71:81014–21
    [Google Scholar]
  28. Jdanov DA, Shkolnikov VM, Gellers-Barkmann S 2021. The International Database on Longevity: data resource profile. Exceptional Lifespans H Maier, B Jeune, JW Vaupel 13–25 New York: Springer
    [Google Scholar]
  29. Kaplan EL, Meier P. 1958. Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53:457–81
    [Google Scholar]
  30. Kay M. 2020. ggdist: visualizations of distributions and uncertainty. R Package, version 2.4.0. https://CRAN.R-project.org/package=ggdist
  31. Keiding N. 1990. Statistical inference in the Lexis diagram. Philos. Trans. R. Soc. Lond. Ser. A 332:487–509
    [Google Scholar]
  32. Keiding N. 2018. Comments to Rootzén & Zholud: Human life is unlimited—but short. Extremes 21:2283–86
    [Google Scholar]
  33. Kestenbaum B, Ferguson BR. 2010. Supercentenarians in the United States. Supercentenarians H Maier, J Gampe, B Jeune, JW Vaupel, JM Robine 219–30 New York: Springer
    [Google Scholar]
  34. Makeham WM. 1860. On the law of mortality and the construction of annuity tables. J. Inst. Actuar. Assur. Mag. 8:301–10
    [Google Scholar]
  35. Moala FA, Dey S. 2018. Objective and subjective prior distributions for the Gompertz distribution. An. Acad. Bras. Ciênc. 90:2643–61
    [Google Scholar]
  36. Moore DF. 2016. Applied Survival Analysis Using R New York: Springer
    [Google Scholar]
  37. Northrop PJ. 2021. rust: ratio-of-uniforms simulation with transformation. R Package. version 1.3.12. https://CRAN.R-project.org/package=rust
  38. Northrop PJ, Attalides N 2016. Posterior propriety in Bayesian extreme value analyses using reference priors. Stat. Sin. 26:2721–43
    [Google Scholar]
  39. Northrop PJ, Coleman CL 2014. Improved diagnostic plots for extreme value analyses. Extremes 17:289–303
    [Google Scholar]
  40. Off. Natl. Stat 2016. Accuracy of official high-age population estimates, in England and Wales: an evaluation. Tech. Rep. Off. Natl. Stat. London:
    [Google Scholar]
  41. Off. Natl. Stat 2020. Estimates of the very old, including centenarians, UK: 2002 to 2019. Tech. Rep. Off. Natl. Stat. London:
    [Google Scholar]
  42. Papastathopoulos I, Tawn JA 2013. Extended generalised Pareto models for tail estimation. J. Stat. Plan. Inference 143:1131–43
    [Google Scholar]
  43. Pearce M, Raftery AE 2021. Probabilistic forecasting of human maximum lifespan by 2100 using Bayesian population projections. Demographic Res 44:1271–94
    [Google Scholar]
  44. Perks W. 1932. On some experiments in the graduation of mortality statistics. J. Inst. Actuar. 61:112–57
    [Google Scholar]
  45. Pickands III J. 1975. Statistical inference using extreme order statistics. Ann. Stat. 3:1119–31
    [Google Scholar]
  46. Poulain M. 2010. On the age validation of supercentenarians. Supercentenarians H Maier, J Gampe, B Jeune, JW Vaupel, JM Robine 3–30 New York: Springer
    [Google Scholar]
  47. Resnick SI. 2006. Heavy-Tail Phenomena: Probabilistic and Statistical Modeling New York: Springer
    [Google Scholar]
  48. Robine JM, Caselli G. 2005. An unprecedented increase in the number of centenarians. Genus 61:157–82
    [Google Scholar]
  49. Rootzén H, Zholud D. 2017. Human life is unlimited—but short (with discussion). Extremes 20:4713–28
    [Google Scholar]
  50. Scarrott C, MacDonald A. 2012. A review of extreme value threshold estimation and uncertainty quantification. REVSTAT 10:33–60
    [Google Scholar]
  51. Smith RL. 1987. Approximations in extreme value theory. Tech. Rep 205, Cent. Stoch. Proc., Univ. N. C. Chapel Hill:
    [Google Scholar]
  52. Thatcher AR. 1999. The long-term pattern of adult mortality and the highest attained age (with discussion). J. R. Stat. Soc. Ser. A 162:5–43
    [Google Scholar]
  53. Thatcher AR, Kannisto V, Vaupel JW. 1998. The Force of Mortality at Ages 80 to 120 Odense, Den: Odense Univ. Press
    [Google Scholar]
  54. Therneau TM, Grambsch PM. 2000. Modeling Survival Data: Extending the Cox Model New York: Springer-Verlag
    [Google Scholar]
  55. Tsai WY, Jewell NP, Wang MC 1987. A note on the product-limit estimator under right censoring and left truncation. Biometrika 74:4883–86
    [Google Scholar]
  56. Turnbull BW. 1976. The empirical distribution function with arbitrarily grouped, censored and truncated data. J. R. Stat. Soc. Ser. B 38:290–95
    [Google Scholar]
  57. Vaupel JW, Manton KG, Stallard E. 1979. The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography 16:3439–54
    [Google Scholar]
  58. Wadsworth JL. 2016. Exploiting structure of maximum likelihood estimators for extreme value threshold selection. Technometrics 58:116–26
    [Google Scholar]
  59. Wakefield JC, Gelfand AE, Smith AFM. 1991. Efficient generation of random variates via the ratio-of-uniforms method. Stat. Comput. 1:129–33
    [Google Scholar]
  60. Waller LA, Turnbull BW. 1992. Probability plotting with censored data. Am. Stat. 46:15–12
    [Google Scholar]
  61. Wilmoth JR, Deegan LJ, Lundstrom H, Horiuch S. 2000. Increase of maximum life-span in Sweden, 1861–1999. Science 289:2366–68
    [Google Scholar]
  62. Zellner A 1977. Maximal data information prior distributions. New Developments in the Applications of Bayesian Methods A Aykac, C Brumat 211–32 Amsterdam: North-Holland
    [Google Scholar]
/content/journals/10.1146/annurev-statistics-040120-025426
Loading
/content/journals/10.1146/annurev-statistics-040120-025426
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error