1932

Abstract

Unlike the real line, the real space, in dimension ≥ 2, is not canonically ordered. As a consequence, extending to a multivariate context fundamental univariate statistical tools such as quantiles, signs, and ranks is anything but obvious. Tentative definitions have been proposed in the literature but do not enjoy the basic properties (e.g., distribution-freeness of ranks, their independence with respect to the order statistic, their independence with respect to signs) they are expected to satisfy. Based on measure transportation ideas, new concepts of distribution and quantile functions, ranks, and signs have been proposed recently that, unlike previous attempts, do satisfy these properties. These ranks, signs, and quantiles have been used, quite successfully, in several inference problems and have triggered, in a short span of time, a number of applications: fully distribution-free testing for multiple-output regression, MANOVA, and VAR models; R-estimation for VARMA parameters; distribution-free testing for vector independence; multiple-output quantile regression; nonlinear independent component analysis; and so on.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-statistics-040220-105948
2022-03-07
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/statistics/9/1/annurev-statistics-040220-105948.html?itemId=/content/journals/10.1146/annurev-statistics-040220-105948&mimeType=html&fmt=ahah

Literature Cited

  1. Bakirov NK, Rizzo ML, Székely GJ. 2006. A multivariate nonparametric test of independence. J. Multivar. Anal. 97:1742–56
    [Google Scholar]
  2. Basu D. 1959. The family of ancillary statistics. Sankhyā Ser. A 21:247–56
    [Google Scholar]
  3. Beirlant J, Buitendag S, del Barrio E, Hallin M, Kamper F 2020. Center-outward quantiles and the measurement of multivariate risk. Insur. Math. Econ. 95:79–100
    [Google Scholar]
  4. Belloni A, Winkler R. 2011. On multivariate quantiles under partial orders. Ann. Stat. 39:1125–79
    [Google Scholar]
  5. Boeckel M, Spokoiny V, Suvorikova A. 2018. Multivariate Brenier cumulative distribution functions and their application to nonparametric testing. arXiv:1809.04090 [math.ST]
  6. Brenier Y. 1991. Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44:375–417
    [Google Scholar]
  7. Carlier G, Chernozhukov V, De Bie G, Galichon A. 2020. Vector quantile regression and optimal transport, from theory to numerics. Empir. Econ. https://doi.org/10.1007/s00181-020-01919-y
    [Crossref] [Google Scholar]
  8. Carlier G, Chernozhukov V, Galichon A 2016. Vector quantile regression: an optimal transport approach. Ann. Stat. 44:1165–92
    [Google Scholar]
  9. Carlier G, Chernozhukov V, Galichon A 2017. Vector quantile regression beyond the specified case. J. Multivar. Anal. 161:96–102
    [Google Scholar]
  10. Chaudhuri P. 1996. On a geometric notion of quantiles for multivariate data. J. Am. Stat. Assoc. 91:862–72
    [Google Scholar]
  11. Chernozhukov V, Galichon A, Hallin M, Henry M. 2017. Monge-Kantorovich depth, quantiles, ranks, and signs. Ann. Stat. 45:223–56
    [Google Scholar]
  12. Chernozhukov V, Galichon A, Henry M, Pass B 2020. Identification of hedonic equilibrium and nonseparable simultaneous equations. J. Political Econ. 129:3842–70
    [Google Scholar]
  13. Cuesta-Albertos J, Matrán C. 1989. Notes on the Wasserstein metric in Hilbert spaces. Ann. Probab. 17:1264–76
    [Google Scholar]
  14. de Valk C, Segers J. 2019. Tails of optimal transport plans for regularly varying probability measures. arXiv:1811.12061 [math.PR]
  15. Deb N, Ghosal P, Sen B. 2020. Measuring association on topological spaces using kernels and geometric graphs. arXiv:2010.01768 [math.ST]
  16. Deb N, Sen B 2019. Multivariate rank-based distribution-free nonparametric testing using measure transportation. arXiv:1909.08733 [math.ST]
  17. del Barrio E, Cuesta-Albertos J, Hallin M, Matrán C 2018. Smooth cyclically monotone interpolation and empirical center-outward distribution functions. arXiv:1806.01238v1 [stat.ME]
  18. del Barrio E, González-Sanz A, Hallin M. 2020. A note on the regularity of optimal-transport-based center-outward distribution and quantile functions. J. Multivar. Anal. 180:104671
    [Google Scholar]
  19. Dick J, Pillichshammer F. 2014. Discrepancy theory and quasi-Monte Carlo integration. Panorama of Discrepancy Theory AS Chen, G Travaglini 539–620 New York: Springer
    [Google Scholar]
  20. Ekeland I, Galichon A, Henry M 2012. Comonotonic measures of multivariate risks. Math. Finance 22:109–32
    [Google Scholar]
  21. Faugeras O, Rüschendorf L. 2017. Markov morphisms: a combined copula and mass transportation approach to multivariate quantiles. Math. Appl. 45:21–63
    [Google Scholar]
  22. Figalli A. 2018. On the continuity of center-outward distribution and quantile functions. Nonlinear Anal. 177:413–21
    [Google Scholar]
  23. Fukumizu K, Gretton A, Sun X, Schölkopf B 2008. Kernel measures of conditional dependence. Advances in Neural Information Processing Systems 20 JC Platt, D Koller, Y Singer, ST Roweis 673–80 Red Hook, NY: Curran
    [Google Scholar]
  24. Galichon A, Henry M. 2012. Dual theory of choice with multivariate risks. J. Econ. Theory 147:1501–16
    [Google Scholar]
  25. Garel B, Hallin M. 1995. Local asymptotic normality of multivariate ARMA processes with a linear trend. Ann. Inst. Stat. Math. 47:551–79
    [Google Scholar]
  26. Ghosal P, Sen B. 2019. Multivariate ranks and quantiles using optimal transportation and applications to goodness-of-fit testing. arXiv:1905.05340 [math.ST]
  27. Gieser PW, Randles RH. 1997. A nonparametric test of independence between two vectors. J. Am. Stat. Assoc. 92:561–67
    [Google Scholar]
  28. Gretton A, Bousquet O, Smola A, Schölkopf B 2005a. Measuring statistical dependence with Hilbert-Schmidt norms. Algorithmic Learning Theory S Jain, HU Simon, E Tomita 63–77 New York: Springer
    [Google Scholar]
  29. Gretton A, Fukumizu K, Teo CH, Song L, Schölkopf B, Smola AJ 2008. A kernel statistical test of independence. Advances in Neural Information Processing Systems 20 JC Platt, D Koller, Y Singer, S Roweis 984–91 Red Hook, NY: Curran
    [Google Scholar]
  30. Gretton A, Herbrich R, Smola A, Bousquet O, Schölkopf B. 2005b. Kernel methods for measuring independence. J. Mach. Learn. Res. 6:2075–129
    [Google Scholar]
  31. Gretton A, Smola A, Bousquet O, Herbrich R, Belitski A et al. 2005c. Kernel constrained covariance for dependence measurement. PMLR R5:112–19
    [Google Scholar]
  32. Gunsilius F, Schennach SM. 2019. Independent nonlinear component analysis Work. Pap. CWP4619 CEMMAP London:
    [Google Scholar]
  33. Gushchin A, Borzykh D. 2017. Integrated quantile functions: properties and applications. Mod. Stoch. Theory Appl. 4:285–314
    [Google Scholar]
  34. Hájek J, Šidák Z. 1967. Theory of Rank Tests New York: Academic
    [Google Scholar]
  35. Hallin M. 2017. On distribution and quantile functions, ranks and signs in: a measure transportation approach. Work. Pap. ECARES 2017-34 Univ. libre de Bruxelles Brussels: https://ideas.repec.org/p/eca/wpaper/2013-258262.html
    [Google Scholar]
  36. Hallin M, del Barrio E, Cuesta-Albertos J, Matrán C. 2021a. Distribution and quantile functions, ranks, and signs in : a measure transportation approach. Ann. Stat. 49:21139–65
    [Google Scholar]
  37. Hallin M, Hlubinka D, Hudecová Š. 2020a. Fully distribution-free center-outward rank tests for multiple-output regression and MANOVA. arXiv:2007.15496 [math.ST]
  38. Hallin M, Ingenbleek JF, Puri M. 1989. Asymptotically most powerful rank tests for multivariate randomness against serial dependence. J. Multivar. Anal. 30:34–71
    [Google Scholar]
  39. Hallin M, La Vecchia D, Liu H 2020b. Center-outward R-estimation for semiparametric VARMA models. J. Am. Stat. Assoc. https://doi.org/10.1080/01621459.2020.1832501
    [Crossref] [Google Scholar]
  40. Hallin M, La Vecchia D, Liu H. 2020c. Rank-based testing for semiparametric VAR models: a measure transportation approach. arXiv:2011.06062 [math.ST]
  41. Hallin M, Lu Z, Paindaveine D, Šiman M 2015. Local bilinear multiple-output quantile regression. Bernoulli 21:1435–66
    [Google Scholar]
  42. Hallin M, Mordant G, Segers J. 2021b. Multivariate goodness-of-fit tests based on Wasserstein distance. Electron. J. Stat. 15:1–44
    [Google Scholar]
  43. Hallin M, Paindaveine D. 2002. Optimal tests for multivariate location based on interdirections and pseudo-Mahalanobis ranks. Ann. Stat. 30:1103–33
    [Google Scholar]
  44. Hallin M, Paindaveine D. 2004. Rank-based optimal tests of the adequacy of an elliptic VARMA model. Ann. Stat. 32:2642–78
    [Google Scholar]
  45. Hallin M, Paindaveine D. 2006. Semiparametrically efficient rank-based inference for shape: I. Optimal rank-based tests for sphericity. Ann. Stat. 34:2707–56
    [Google Scholar]
  46. Hallin M, Paindaveine D 2008a. Chernoff-Savage and Hodges-Lehmann results for Wilks' test of multivariate independence. Beyond Parametrics in Interdisciplinary Research: Festschrift in Honor of Professor Pranab K. Sen N Balakrishnan, EA Peña, MJ Silvapulle 184–96 Beachwood, OH: IMS
    [Google Scholar]
  47. Hallin M, Paindaveine D. 2008b. Optimal rank-based tests for homogeneity of scatter. Ann. Stat. 36:1261–98
    [Google Scholar]
  48. Hallin M, Paindaveine D, Šiman M 2010a. Multivariate quantiles and multiple-output regression quantiles: from optimization to halfspace depth (with discussion and rejoinder). Ann. Stat. 38:635–69
    [Google Scholar]
  49. Hallin M, Paindaveine D, Verdebout T 2010b. Optimal rank-based testing for principal components. Ann. Stat. 38:3245–99
    [Google Scholar]
  50. Hallin M, Paindaveine D, Verdebout T 2013. Optimal rank-based tests for common principal components. Bernoulli 19:2524–56
    [Google Scholar]
  51. Hallin M, Puri M. 1994. Aligned rank tests for linear models with autocorrelated error terms. J. Multivar. Anal. 50:175–237
    [Google Scholar]
  52. Hallin M, Werker B 1998. Optimal testing for semiparametric autoregressive models: from Gaussian Lagrange multipliers to regression rank scores and adaptive tests. Asymptotics, Nonparametrics, and Time Series S Ghosh 295–358 New York: Marcel Dekker
    [Google Scholar]
  53. Hallin M, Werker B. 2003. Semiparametric efficiency, distribution-freeness, and invariance. Bernoulli 9:137–65
    [Google Scholar]
  54. Hamel A, Kostner D 2018. Cone distribution functions and quantiles for multivariate random variables. J. Multivar. Anal. 167:97–113
    [Google Scholar]
  55. Hodges J. 1955. A bivariate sign test. Ann. Math. Stat. 26:523–27
    [Google Scholar]
  56. Judd K. 1998. Numerical Methods in Economics Cambridge, MA: MIT Press
    [Google Scholar]
  57. Kim I, Balakrishnan S, Wasserman L. 2020. Robust multivariate nonparametric tests via projection averaging. Ann. Stat. 48:3417–41
    [Google Scholar]
  58. Koenker R, Bassett GJ. 1978. Regression quantiles. Econometrica 46:33–50
    [Google Scholar]
  59. Koenker R, Chernozhukov V, He X, Peng L. 2017. Handbook of Quantile Regression Boca Raton, FL: Chapman and Hall/CRC
    [Google Scholar]
  60. Koltchinskii V. 1997. M-estimation, convexity and quantiles. Ann. Stat. 25:435–77
    [Google Scholar]
  61. Konijn HS. 1956. On the power of certain tests for independence in bivariate populations. Ann. Math. Stat. 27:300–23
    [Google Scholar]
  62. Lehmann EL, Romano J. 2005. Testing Statistical Hypotheses New York: Springer
    [Google Scholar]
  63. Liu R 1992. Data depth and multivariate rank tests. L1 Statistics and Related Methods Y Dodge 279–94 Amsterdam: North-Holland
    [Google Scholar]
  64. Liu R, Singh K. 1993. A quality index based on data depth and multivariate rank tests. J. Am. Stat. Assoc. 88:257–60
    [Google Scholar]
  65. Lòpez-Pintado S, Romo J. 2012. On the concept of depth for functional data. J. Am. Stat. Assoc. 104:718–34
    [Google Scholar]
  66. Marden J 1999. Multivariate rank tests. Design of Experiments and Survey Sampling S Ghosh 401–32 New York: Marcel Dekker
    [Google Scholar]
  67. McCann RJ. 1995. Existence and uniqueness of monotone measure-preserving maps. Duke Math. J. 80:309–23
    [Google Scholar]
  68. Niederreiter H. 1992. Random Number Generation and Quasi–Monte Carlo Methods Philadelphia, PA: SIAM:
    [Google Scholar]
  69. Oja H. 1999. Affine invariant multivariate sign and rank tests and corresponding estimates: a review. Scand. J. Stat. 26:319–43
    [Google Scholar]
  70. Oja H. 2010. Multivariate Nonparametric Methods with R: An Approach Based on Spatial Signs and Ranks New York: Springer
    [Google Scholar]
  71. Oja H, Paindaveine D. 2005. Optimal signed-rank tests based on hyperplanes. J. Stat. Plann. Inference 135:300–23
    [Google Scholar]
  72. Oja H, Randles RH. 2004. Multivariate nonparametric tests. Stat. Sci. 19:598–605
    [Google Scholar]
  73. Panaretos V, Zemel Y. 2019. Statistical aspects of Wasserstein distances. Annu. Rev. Stat. Appl. 6:405–31
    [Google Scholar]
  74. Panaretos VM, Zemel Y. 2020. An Invitation to Statistics in Wasserstein Space New York: Springer
    [Google Scholar]
  75. Peyré G, Cuturi M. 2019. Computational optimal transport with applications to data science. Found. Trends Mach. Learn. 11:355–607
    [Google Scholar]
  76. Puri ML, Sen PK. 1971. Nonparametric Methods in Multivariate Analysis New York: Wiley
    [Google Scholar]
  77. Puri ML, Sen PK. 1985. Nonparametric Methods in General Linear Models New York: Wiley
    [Google Scholar]
  78. Rachev ST, Rüschendorf L. 1998. Mass Transportation Problems New York: Springer
    [Google Scholar]
  79. Randles RH. 1989. A distribution-free multivariate sign test based on interdirections. J. Am. Stat. Assoc. 84:1045–50
    [Google Scholar]
  80. Rüschendorf L, Rachev ST. 1990. A characterization of random variables with minimum L2-distance. J. Multivar. Anal. 32:48–54
    [Google Scholar]
  81. Santner T, Williams B, Notz W 2003. The Design and Analysis of Computer Experiments New York: Springer
    [Google Scholar]
  82. Sejdinovic D, Sriperumbudur B, Gretton A, Fukumizu K 2013. Equivalence of distance-based and RKHS-based statistics in hypothesis testing. Ann. Stat. 41:2263–91
    [Google Scholar]
  83. Serfling R. 2002. Quantile functions for multivariate analysis: approaches and applications. Stat. Neerl. 56:214–32
    [Google Scholar]
  84. Shi H, Drton M, Han F 2021a. Distribution-free consistent independence tests via center-outward ranks and signs. J. Am. Stat. Assoc. https://doi.org/10.1080/01621459.2020.1782223
    [Crossref] [Google Scholar]
  85. Shi H, Drton M, Han F. 2021b. On the power of Chatterjee rank correlation. arXiv:2008.11619 [math.ST]
  86. Shi H, Hallin M, Drton M, Han F 2020. Rate-optimality of consistent distribution-free tests of independence based on center-outward ranks and signs. arXiv:2007.02186 [math.ST]
  87. Székely GJ, Rizzo ML. 2009. Brownian distance covariance. Ann. Appl. Stat. 3:1236–65
    [Google Scholar]
  88. Székely GJ, Rizzo ML. 2013. Energy statistics: a class of statistics based on distances. J. Stat. Plann. Inference 143:1249–72
    [Google Scholar]
  89. Székely GJ, Rizzo ML, Bakirov NK. 2007. Measuring and testing dependence by correlation of distances. Ann. Stat. 35:2769–94
    [Google Scholar]
  90. Taskinen S, Oja H, Randles RH. 2005. Multivariate nonparametric tests of independence. J. Am. Stat. Assoc. 100:916–25
    [Google Scholar]
  91. Um Y, Randles RH. 1998. Nonparametric tests for the multivariate multi-sample location problem. Stat. Sinica 8:801–12
    [Google Scholar]
  92. van der Vaart AW, Wellner JA. 1996. Weak Convergence New York: Springer
    [Google Scholar]
  93. Villani C. 2003. Topics in Optimal Transportation Providence, RI: Am. Math. Soc.
    [Google Scholar]
  94. Villani C. 2009. Optimal Transport: Old and New Berlin: Springer-Verlag
    [Google Scholar]
  95. Weihs L, Drton M, Meinshausen N 2018. Symmetric rank covariances: a generalized framework for nonparametric measures of dependence. Biometrika 105:547–62
    [Google Scholar]
  96. Yosida K. 1964. Functional Analysis New York: Springer
    [Google Scholar]
  97. Zhu L, Xu K, Li R, Zhong W 2017. Projection correlation between two random vectors. Biometrika 104:829–43
    [Google Scholar]
  98. Zuo Y. 2018. On general notions of depth for regression. arXiv:1805.02046 [stat.ME]
  99. Zuo Y, He X. 2006. On the limiting distributions of multivariate depth-based rank sum statistics and related tests. Ann. Stat. 34:2879–96
    [Google Scholar]
  100. Zuo Y, Serfling R. 2000. General notions of statistical depth function. Ann. Stat. 28:461–82
    [Google Scholar]
/content/journals/10.1146/annurev-statistics-040220-105948
Loading
/content/journals/10.1146/annurev-statistics-040220-105948
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error