1932

Abstract

The role of competing risks in the analysis of time-to-event data is increasingly acknowledged. Software is readily available. However, confusion remains regarding the proper analysis: When and how do I need to take the presence of competing risks into account? Which quantities are relevant for my research question? How can they be estimated and what assumptions do I need to make? The main quantities in a competing risks analysis are the cause-specific cumulative incidence, the cause-specific hazard, and the subdistribution hazard. We describe their nonparametric estimation, give an overview of regression models for each of these quantities, and explain their difference in interpretation. We discuss the proper analysis in relation to the type of study question, and we suggest software in R and Stata. Our focus is on competing risks analysis in medical research, but methods can equally be applied in other fields like social science, engineering, and economics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-statistics-040522-094556
2024-04-22
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/statistics/11/1/annurev-statistics-040522-094556.html?itemId=/content/journals/10.1146/annurev-statistics-040522-094556&mimeType=html&fmt=ahah

Literature Cited

  1. Aalen OO. 1989.. A linear regression model for the analysis of life times. . Stat. Med. 8:(8):90725
    [Crossref] [Google Scholar]
  2. Allignol A, Schumacher M, Wanner C, Drechsler C, Beyersmann J. 2011.. Understanding competing risks: a simulation point of view. . BMC Med. Res. Methodol. 11::86
    [Crossref] [Google Scholar]
  3. Amico M, Van Keilegom I. 2018.. Cure models in survival analysis. . Annu. Rev. Stat. Appl. 5::31142
    [Crossref] [Google Scholar]
  4. Andersen PK. 2013.. Decomposition of number of life years lost according to causes of death. . Stat. Med. 32:(30):527885
    [Crossref] [Google Scholar]
  5. Andersen PK, Borgan Ø, Gill RD, Keiding N. 1993.. Statistical Models Based on Counting Processes. New York:: Springer-Verlag
    [Google Scholar]
  6. Andersen PK, Keiding N. 2012.. Interpretability and importance of functionals in competing risks and multistate models. . Stat. Med. 31:(11–12):107488
    [Crossref] [Google Scholar]
  7. Andersen PK, Ravn H. 2024.. Models for Multi-State Survival Data: Rates, Risks, and Pseudo-Values. Boca Raton, FL:: Chapman and Hall/CRC. , 1st ed..
    [Google Scholar]
  8. Austin PC, Fine JP. 2017.. Practical recommendations for reporting Fine-Gray model analyses for competing risk data. . Stat. Med. 36:(27):4391400
    [Crossref] [Google Scholar]
  9. Austin PC, Lee DS, Fine JP. 2016.. Introduction to the analysis of survival data in the presence of competing risks. . Circulation 133:(6):6019
    [Crossref] [Google Scholar]
  10. Bajorunaite R, Klein JP. 2008.. Comparison of failure probabilities in the presence of competing risks. . J. Stat. Comput. Simul. 78:(10):95166
    [Crossref] [Google Scholar]
  11. Bakoyannis G, Siannis F, Touloumi G. 2010.. Modelling competing risks data with missing cause of failure. . Stat. Med. 29:(30):317285
    [Crossref] [Google Scholar]
  12. Bentzen SM, Vaeth M, Pedersen DE, Overgaard J. 1995.. Why actuarial estimates should be used in reporting late normal-tissue effects of cancer treatment … now!. Int. J. Radiat. Oncol. Biol. Phys. 32:(5):153134
    [Crossref] [Google Scholar]
  13. Beyersmann J, Allignol A, Schumacher M. 2012.. Competing Risks and Multistate Models With R. New York:: Springer-Verlag
    [Google Scholar]
  14. Beyersmann J, Latouche A, Buchholz A, Schumacher M. 2009.. Simulating competing risks data in survival analysis. . Stat. Med. 28:(6):95671
    [Crossref] [Google Scholar]
  15. Blanche PF, Holt A, Scheike T. 2023.. On logistic regression with right censored data, with or without competing risks, and its use for estimating treatment effects. . Lifetime Data Anal. 29:(2):44182
    [Crossref] [Google Scholar]
  16. Braun TM, Yuan Z. 2007.. Comparing the small sample performance of several variance estimators under competing risks. . Stat. Med. 26:(5):117080
    [Crossref] [Google Scholar]
  17. Caplan RJ, Pajak TF, Cox JD. 1994.. Analysis of the probability and risk of cause-specific failure. . Int. J. Radiat. Oncol. Biol. Phys. 29:(5):118386
    [Crossref] [Google Scholar]
  18. Chen J, Hou Y, Chen Z. 2020.. Statistical inference methods for cumulative incidence function curves at a fixed point in time. . Commun. Stat. Simul. Comput. 49:(1):7994
    [Crossref] [Google Scholar]
  19. Conner SC, Trinquart L. 2021.. Estimation and modeling of the restricted mean time lost in the presence of competing risks. . Stat. Med. 40:(9):217796
    [Crossref] [Google Scholar]
  20. Crowther MJ. 2022.. Simulating time-to-event data from parametric distributions, custom distributions, competing-risks models, and general multistate models. . Stata J. 22:(1):324
    [Crossref] [Google Scholar]
  21. Datta S, Satten GA. 2002.. Estimation of integrated transition hazards and stage occupation probabilities for non-Markov systems under dependent censoring. . Biometrics 58:(4):792802
    [Crossref] [Google Scholar]
  22. De Angelis G, Allignol A, Murthy A, Wolkewitz M, Beyersmann J, et al. 2011.. Multistate modelling to estimate the excess length of stay associated with meticillin-resistant Staphylococcus aureus colonisation and infection in surgical patients. . J. Hosp. Infect. 78:(2):8691
    [Crossref] [Google Scholar]
  23. de Vries EM, Wang J, Williamson KD, Leeflang MM, Boonstra K, et al. 2017.. A novel prognostic model for transplant-free survival in primary sclerosing cholangitis. . Gut 67:(10):186469
    [Crossref] [Google Scholar]
  24. de Wreede LC, Fiocco M, Putter H. 2011.. mstate: An R package for the analysis of competing risks and multi-state models. . J. Stat. Softw. 38:(7):130
    [Crossref] [Google Scholar]
  25. Deresa NW, Van Keilegom I. 2023.. Copula based Cox proportional hazards models for dependent censoring. . J. Am. Stat. Assoc. In press. https://doi.org/10.1080/01621459.2022.2161387
    [Google Scholar]
  26. Donoghoe MW, Gebski V. 2017.. The importance of censoring in competing risks analysis of the subdistribution hazard. . BMC Med. Res. Methodol. 17::52
    [Crossref] [Google Scholar]
  27. Dormuth I, Liu T, Xu J, Pauly M, Ditzhaus M. 2023.. A comparative study to alternatives to the log-rank test. . Contemp. Clinical Trials 128::107165
    [Crossref] [Google Scholar]
  28. Eriksson F, Li J, Scheike T, Zhang MJ. 2015.. The proportional odds cumulative incidence model for competing risks. . Biometrics 71:(3):68795
    [Crossref] [Google Scholar]
  29. Fine JP, Gray RJ. 1999.. A proportional hazards model for the subdistribution of a competing risk. . J. Am. Stat. Assoc. 94:(446):496509
    [Crossref] [Google Scholar]
  30. Fine JP, Jiang H, Chappell R. 2001.. On semi-competing risks data. . Biometrika 88:(4):90719
    [Crossref] [Google Scholar]
  31. Gerds TA, Kattan MW. 2021.. Medical Risk Prediction Models: With Ties to Machine Learning. Boca Raton, FL:: Chapman and Hall/CRC. , 1st ed..
    [Google Scholar]
  32. Geskus RB. 2011.. Cause-specific cumulative incidence estimation and the Fine and Gray model under both left truncation and right censoring. . Biometrics 67:(1):3949
    [Crossref] [Google Scholar]
  33. Geskus RB. 2016.. Data Analysis with Competing Risks and Intermediate States. Boca Raton, FL:: Taylor & Francis/CRC
    [Google Scholar]
  34. Geskus RB. 2020.. Competing risks: aims and methods. . In Handbook of Statistics, ed. ASR Srinivasa Rao, CR Rao , Vol. 43, pp. 24987. Amsterdam:: Elsevier Sci.
    [Google Scholar]
  35. Gillies D. 2019.. Causality, Probability, and Medicine. London:: Routledge
    [Google Scholar]
  36. Goetghebeur E, Ryan L. 1995.. Analysis of competing risks survival data when some failure types are missing. . Biometrika 82:(4):82133
    [Crossref] [Google Scholar]
  37. Gouskova NA, Lin FC, Fine JP. 2016.. Nonparametric analysis of competing risks data with event category missing at random. . Biometrics 73:(1):10413
    [Crossref] [Google Scholar]
  38. Gras L, Geskus RB, Jurriaans S, Bakker M, van Sighem A, et al. 2013.. Has the rate of CD4 cell count decline before initiation of antiretroviral therapy changed over the course of the Dutch HIV epidemic among MSM?. PLOS ONE 8:(5):e64437
    [Crossref] [Google Scholar]
  39. Gray RJ. 1988.. A class of k-sample tests for comparing the cumulative incidence of a competing risk. . Ann. Stat. 16:(3):114154
    [Crossref] [Google Scholar]
  40. He P, Eriksson F, Scheike TH, Zhang MJ. 2015.. A proportional hazards regression model for the subdistribution with covariates-adjusted censoring weight for competing risks data. . Scand. J. Stat. 43:(1):10322
    [Crossref] [Google Scholar]
  41. Hernán MA. 2010.. The hazards of hazard ratios. . Epidemiology 21:(1):1315
    [Crossref] [Google Scholar]
  42. Hinchliffe SR, Lambert PC. 2013.. Flexible parametric modelling of cause-specific hazards to estimate cumulative incidence functions. . BMC Med. Res. Methodol. 13::13
    [Crossref] [Google Scholar]
  43. Kalbfleisch JD, Prentice RL. 2002.. The Statistical Analysis of Failure Time Data. New York:: Wiley. , 2nd ed..
    [Google Scholar]
  44. Kipourou DK, Charvat H, Rachet B, Belot A. 2019.. Estimation of the adjusted cause-specific cumulative probability using flexible regression models for the cause-specific hazards. . Stat. Med. 38:(20):3896910
    [Crossref] [Google Scholar]
  45. Lambert PC. 2017.. The estimation and modelling of cause-specific cumulative incidence functions using time-dependent weights. . Stata J. 17:(1):181207
    [Crossref] [Google Scholar]
  46. Lambert PC, Wilkes SR, Crowther MJ. 2017.. Flexible parametric modelling of the cause-specific cumulative incidence function. . Stat. Med. 36:(9):142946
    [Crossref] [Google Scholar]
  47. Latouche A, Allignol A, Beyersmann J, Labopin M, Fine JP. 2013.. A competing risks analysis should report results on all cause-specific hazards and cumulative incidence functions. . J. Clin. Epidemiol. 66:(6):64853
    [Crossref] [Google Scholar]
  48. Lau B, Cole SR, Gange SJ. 2009.. Competing risk regression models for epidemiologic data. . Am. J. Epidemiol. 170:(2):24456
    [Crossref] [Google Scholar]
  49. Lau B, Lesko C. 2018.. Missingness in the setting of competing risks: from missing values to missing potential outcomes. . Curr. Epidemiol. Rep. 5:(2):15359
    [Crossref] [Google Scholar]
  50. Lee M, Fine JP. 2022.. Competing risks predictions with different time scales under the additive risk model. . Stat. Med. 41:(20):394157
    [Crossref] [Google Scholar]
  51. Leek JT, Peng RD. 2015.. What is the question?. Science 347:(6228):131415
    [Crossref] [Google Scholar]
  52. Li W, Xue X, Long Y. 2017.. An additive subdistribution hazard model for competing risks data. . Commun. Stat. Theory Methods 46:(23):1166787
    [Crossref] [Google Scholar]
  53. Li Y, Sun L, Burstein DS, Getz KD. 2022.. Considerations of competing risks analysis in cardio-oncology studies. . JACC: CardioOncology 4:(3):287301
    [Crossref] [Google Scholar]
  54. Liu XR, Pawitan Y, Clements M. 2018.. Parametric and penalized generalized survival models. . Stat. Methods Med. Res. 27:(5):153146
    [Crossref] [Google Scholar]
  55. Martinussen T. 2022.. Causality and the Cox regression model. . Annu. Rev. Stat. Appl. 9::24959
    [Crossref] [Google Scholar]
  56. Martinussen T, Stensrud MJ. 2021.. Estimation of separable direct and indirect effects in continuous time. . Biometrics 79:(1):12739
    [Crossref] [Google Scholar]
  57. Moriña D, Navarro A. 2017.. Competing risks simulation with the survsim R package. . Commun. Stat. Simul. Comput. 46:(7):571222
    [Crossref] [Google Scholar]
  58. Morris TP, Jarvis CI, Cragg W, Phillips PPJ, Choodari-Oskooei B, Sydes MR. 2019.. Proposals on Kaplan–Meier plots in medical research and a survey of stakeholder views: KMunicate. . BMJ Open 9:(9):e030215
    [Crossref] [Google Scholar]
  59. Mozumder SI, Rutherford MJ, Lambert PC. 2017.. A flexible parametric competing-risks model using a direct likelihood approach for the cause-specific cumulative incidence function. . Stata J. 17:(2):46289
    [Crossref] [Google Scholar]
  60. Mozumder SI, Rutherford MJ, Lambert PC. 2021.. Estimating restricted mean survival time and expected life-years lost in the presence of competing risks within flexible parametric survival models. . BMC Med. Res. Methodol. 21::52
    [Crossref] [Google Scholar]
  61. Norbury W, Herndon DN, Tanksley J, Jeschke MG, Finnerty CC, Sci. Study Comm. Surg. Infect. Soc. 2016.. Infection in burns. . Surg. Infect. 17:(2):25055
    [Crossref] [Google Scholar]
  62. Overgaard M, Andersen PK, Parner ET. 2015.. Regression analysis of censored data using pseudo-observations: an update. . Stata J. 15:(3):80921
    [Crossref] [Google Scholar]
  63. Petersen ML, Porter KE, Gruber S, Wang Y, van der Laan MJ. 2012.. Diagnosing and responding to violations in the positivity assumption. . Stat. Methods Med. Res. 21:(1):3154
    [Crossref] [Google Scholar]
  64. Porta-Bleda N. 2010.. Interval-censored semi-competing risks data: a novel approach for modelling bladder cancer. PhD Diss. , Univ. Politècnica de Catalunya, Barcelona, Spain:
    [Google Scholar]
  65. Putter H, Fiocco M, Geskus RB. 2007.. Tutorial in biostatistics: competing risks and multi-state models. . Stat. Med. 26:(11):2389430
    [Crossref] [Google Scholar]
  66. RECOVERY Collab. Group. 2021.. Dexamethasone in hospitalized patients with Covid-19. . N. Engl. J. Med. 384:(8):693704
    [Crossref] [Google Scholar]
  67. Ruan PK, Gray RJ. 2008.. Analyses of cumulative incidence functions via non-parametric multiple imputation. . Stat. Med. 27:(27):570924
    [Crossref] [Google Scholar]
  68. Russo F, Williamson J. 2007.. Interpreting causality in the health sciences. . Int. Stud. Philos. Sci. 21:(2):15770
    [Crossref] [Google Scholar]
  69. Sachs MC, Gabriel EE. 2022.. Event history regression with pseudo-observations: computational approaches and an implementation in R. . J. Stat. Softw. 102:(9):134
    [Crossref] [Google Scholar]
  70. Scheike TH, Zhang MJ. 2011.. Analyzing competing risk data using the R timereg package. . J. Stat. Softw. 38:(2):115
    [Crossref] [Google Scholar]
  71. Scheike TH, Zhang MJ, Gerds TA. 2008.. Predicting cumulative incidence probability by direct binomial regression. . Biometrika 95:(1):20520
    [Crossref] [Google Scholar]
  72. Shmueli G. 2010.. To explain or to predict?. Stat. Sci. 25:(3):289310
    [Crossref] [Google Scholar]
  73. Stensrud MJ, Aalen JM, Aalen OO, Valberg M. 2019.. Limitations of hazard ratios in clinical trials. . Eur. Heart J. 40:(17):137883
    [Crossref] [Google Scholar]
  74. Stensrud MJ, Hernán MA, Tchetgen Tchetgen EJ, Robins JM, Didelez V, Young JG. 2021.. A generalized theory of separable effects in competing event settings. . Lifetime Data Anal. 27:(4):588631
    [Crossref] [Google Scholar]
  75. Stensrud MJ, Young JG, Didelez V, Robins JM, Hernán MA. 2020.. Separable effects for causal inference in the presence of competing events. . J. Am. Stat. Assoc. 117:(537):17583
    [Crossref] [Google Scholar]
  76. Syriopoulou E, Mozumder SI, Rutherford MJ, Lambert PC. 2022.. Estimating causal effects in the presence of competing events using regression standardisation with the Stata command standsurv. . BMC Med. Res. Methodol. 22::226
    [Crossref] [Google Scholar]
  77. Therneau T, Crowson C, Atkinson E. 2023.. Multi-state models and competing risks. R Vignette for package survival. https://cran.r-project.org/web/packages/survival/vignettes/compete.pdf
    [Google Scholar]
  78. Tsiatis AA. 1975.. A nonidentifiability aspect of the problem of competing risks. . PNAS 72:(1):2022
    [Crossref] [Google Scholar]
  79. Van der Helm J, Geskus R, Sabin C, Meyer L, del Amo J, et al. 2013.. Effect of HCV infection on cause-specific mortality after HIV seroconversion, before and after 1997. . Gastroenterology 144:(4):75160
    [Crossref] [Google Scholar]
  80. Van Geloven N, Giardiello D, Bonneville EF, Teece L, Ramspek CL, et al. 2022.. Validation of prediction models in the presence of competing risks: a guide through modern methods. . BMJ 377::e069249
    [Crossref] [Google Scholar]
  81. Van Geloven N, le Cessie S, Dekker FW, Putter H. 2017.. Transplant as a competing risk in the analysis of dialysis patients. . Nephrol. Dial. Transpl. 32:(Suppl. 2):ii5359
    [Google Scholar]
  82. van Houwelingen HC, Putter H. 2011.. Dynamic Prediction in Clinical Survival Analysis. Boca Raton, FL:: Chapman and Hall/CRC
    [Google Scholar]
  83. When to Start Consort. 2009.. Timing of initiation of antiretroviral therapy in AIDS-free HIV-1-infected patients: a collaborative analysis of 18 HIV cohort studies. . Lancet 373:(9672):135263
    [Crossref] [Google Scholar]
  84. Young JG, Stensrud MJ, Tchetgen Tchetgen EJ, Hernán MA. 2020.. A causal framework for classical statistical estimands in failure-time settings with competing events. . Stat. Med. 39:(8):1199236
    [Crossref] [Google Scholar]
  85. Zugna D, Geskus RB, De Stavola B, Rosinska M, Bartmeyer B, et al. 2012.. Time to virological failure, treatment change and interruption for individuals treated within 12 months of HIV seroconversion and in chronic infection. . Antivir. Ther. 17:(6):103948
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-statistics-040522-094556
Loading
/content/journals/10.1146/annurev-statistics-040522-094556
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error