1932

Abstract

Rainfall is the main input to most hydrological systems. To assess flood risk for a catchment area, hydrologists use models that require long series of subdaily, perhaps even subhourly, rainfall data, ideally from locations that cover the area. If historical data are not sufficient for this purpose, an alternative is to simulate synthetic data from a suitably calibrated model. We review stochastic models that have a mechanistic structure, intended to mimic physical features of the rainfall processes, and are constructed using stationary point processes. We describe models for temporal and spatial-temporal rainfall and consider how they can be fitted to data. We provide an example application using a temporal model and an illustration of data simulated from a spatial-temporal model. We discuss how these models can contribute to the simulation of future rainfall that reflects our changing climate.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-statistics-040622-023838
2024-04-22
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/statistics/11/1/annurev-statistics-040622-023838.html?itemId=/content/journals/10.1146/annurev-statistics-040622-023838&mimeType=html&fmt=ahah

Literature Cited

  1. Aryal NR, Jones OD. 2020.. Fitting the Bartlett–Lewis rainfall model using Approximate Bayesian Computation. . Math. Comput. Simul. 175::15363
    [Crossref] [Google Scholar]
  2. Aryal NR, Jones OD. 2021.. Spatial-temporal rainfall models based on Poisson cluster processes. . Stoch. Environ. Res. Risk Assess. 35:(12):262943
    [Crossref] [Google Scholar]
  3. Beaumont MA. 2019.. Approximate Bayesian computation. . Annu. Rev. Stat. Appl. 6::379403
    [Crossref] [Google Scholar]
  4. Bellone E, Hughes JP, Guttorp P. 2000.. A hidden Markov model for downscaling synoptic atmospheric patterns to precipitation amounts. . Climate Res. 15:(1):112
    [Crossref] [Google Scholar]
  5. Burton A, Fowler HJ, Blenkinsop S, Kilsby CG. 2010.. Downscaling transient climate change using a Neyman–Scott rectangular pulses stochastic rainfall model. . J. Hydrol. 381:(1–2):1832
    [Crossref] [Google Scholar]
  6. Burton A, Fowler HJ, Kilsby CG, O'Connell PE. 2010.. A stochastic model for the spatial-temporal simulation of nonhomogeneous rainfall occurrence and amounts. . Water Resourc. Res. 46:(11):W11501
    [Crossref] [Google Scholar]
  7. Burton A, Kilsby CG, Fowler HJ, Cowpertwait PS, O'Connell PE. 2008.. RainSim: a spatial-temporal stochastic rainfall modelling system. . Environ. Model. Softw. 23:(12):135669
    [Crossref] [Google Scholar]
  8. Camera C, Bruggeman A, Hadjinicolaou P, Michaelides S, Lang MA. 2017.. Evaluation of a spatial rainfall generator for generating high resolution precipitation projections over orographically complex terrain. . Stoch. Environ. Res. Risk Assess. 31::75773
    [Crossref] [Google Scholar]
  9. Cameron D, Beven K, Tawn J. 2000.. Modelling extreme rainfalls using a modified random pulse Bartlett–Lewis stochastic rainfall model (with uncertainly). . Adv. Water Resourc. 24:(2):20311
    [Crossref] [Google Scholar]
  10. CEH (UK Cent. Ecol. Hydrol.) Wallingford. 2007.. HYREX project: Met Office C-band radar data from Wardon Hill, UK. Database , NCAS British Atmospheric Data Centre, Leeds, UK:, updated Dec. 2002. https://catalogue.ceda.ac.uk/uuid/e3fe71be138f1a2d97247df769f37fe1
    [Google Scholar]
  11. Chandler RE. 2016.. MOMFIT: moment-based calibration of point process models for single-site rainfall sequences. . Statistical Software. https://www.ucl.ac.uk/∼ucakarc/work/momfit.html
    [Google Scholar]
  12. Chandler RE. 2020a.. Multisite, multivariate weather generation based on generalised linear models. . Environ. Model. Softw. 134::104867
    [Crossref] [Google Scholar]
  13. Chandler RE. 2020b.. Rglimclim: A multisite, multivariate weather generator based on generalised linear models. . R Package. https://www.ucl.ac.uk/∼ucakarc/work/glimclim.html
    [Google Scholar]
  14. Chandler RE, Isham V, Bellone E, Yang C, Northrop P. 2007.. Space-time modelling of rainfall for continuous simulation. . In Statistical Methods for Spatio-Temporal Systems, ed. B Finkenstadt, L Held, V Isham , pp. 177215. Boca Raton, FL:: Chapman and Hall/CRC
    [Google Scholar]
  15. Chandler RE, Isham VS, Northrop PJ, Wheater HS, Onof CJ, Leith NA. 2014.. Uncertainty in rainfall inputs. . In Applied Uncertainty Analysis for Flood Risk Management, ed. K Beven, J Hall , pp. 10152. London:: Imperial Coll. Press
    [Google Scholar]
  16. Chen J, Brissette F, Zhang XJ. 2014.. A multi-site stochastic weather generator for daily precipitation and temperature. . Trans. ASABE 57:(5):137591
    [Google Scholar]
  17. Chen Y, Paschalis A, Wang LP, Onof C. 2021.. Can we estimate flood frequency with point-process spatial-temporal rainfall models?. J. Hydrol. 600::126667
    [Crossref] [Google Scholar]
  18. Collins M, Chandler RE, Cox PM, Huthnance JM, Rougier J, Stephenson DB. 2012.. Quantifying future climate change. . Nat. Clim. Change 2:(6):4039
    [Crossref] [Google Scholar]
  19. Cordano E, Eccel E. 2016.. Tools for stochastic weather series generation in R environment. . Italian J. Agrometeorol. 3::3142
    [Google Scholar]
  20. Cordano E, Eccel E. 2019.. RMAWGEN: multi-site auto-regressive weather generator. . R Package, version 1.3.7. https://cran.r-project.org/package=RMAWGEN
    [Google Scholar]
  21. Cowpertwait P, Isham V, Onof C. 2007.. Point process models of rainfall: developments for fine-scale structure. . Proc. R. Soc. Lond. Ser. A 463:(2086):256987
    [Google Scholar]
  22. Cowpertwait PSP. 1994.. A generalized point process model for rainfall. . Proc. R. Soc. Lond. Ser. A 447:(1929):2337
    [Crossref] [Google Scholar]
  23. Cowpertwait PSP. 1995.. A generalized spatial-temporal model of rainfall based on a clustered point process. . Proc. R. Soc. Lond. Ser. A 450:(1938):16375
    [Crossref] [Google Scholar]
  24. Cowpertwait PSP. 1998.. A Poisson-cluster model of rainfall: some high-order moments and extreme values. . Proc. R. Soc. Lond. Ser. A 454:(1971):88598
    [Crossref] [Google Scholar]
  25. Cowpertwait PSP. 2010.. A spatial-temporal point process model with a continuous distribution of storm types. . Water Resourc. Res. 46:(12):W12507
    [Crossref] [Google Scholar]
  26. Cowpertwait PSP, Kilsby CG, O'Connell PE. 2002.. A space-time Neyman–Scott model of rainfall: empirical analysis of extremes. . Water Resourc. Res. 38:(8):6114
    [Crossref] [Google Scholar]
  27. Cox DR, Isham VS. 1988.. A simple spatial-temporal model of rainfall. . Proc. R. Soc. Lond. Ser. A 415:(1849):31728
    [Crossref] [Google Scholar]
  28. Cox DR, Isham VS. 1994.. Stochastic models of precipitation. . In Statistics for the Environment 2: Water Related Issues, ed. V Barnett, KF Turkman , pp. 318. New York:: Wiley
    [Google Scholar]
  29. Cross D, Onof C, Winter H. 2020.. Ensemble estimation of future rainfall extremes with temperature dependent censored simulation. . Adv. Water Resourc. 136::103479
    [Crossref] [Google Scholar]
  30. Cross D, Onof C, Winter H, Bernardara P. 2018.. Censored rainfall modelling for estimation of fine-scale extremes. . Hydrol. Earth Syst. Sci. 22:(1):72756
    [Crossref] [Google Scholar]
  31. Daud ZM, Rasid SMM, Abas N. 2016.. A regionalized stochastic rainfall model for the generation of high resolution data in peninsular Malaysia. . Mod. Appl. Sci. 10:(5):7786
    [Crossref] [Google Scholar]
  32. De Luca D, Petroselli A. 2000.. STORAGE (STOchastic RAinfall GEnerator): a user-friendly software for generating long and high-resolution rainfall time series. . Statistical Software. https://sites.google.com/unical.it/storage
    [Google Scholar]
  33. De Luca DL, Petroselli A. 2021.. STORAGE (STOchastic RAinfall GEnerator): a user-friendly software for generating long and high-resolution rainfall time series. . Hydrology 8:(2):76
    [Crossref] [Google Scholar]
  34. Deidda R, Benzi R, Siccardi F. 1999.. Multifractal modeling of anomalous scaling laws in rainfall. . Water Resourc. Res. 35:(6):185367
    [Crossref] [Google Scholar]
  35. Entekhabi D, Rodriguez-Iturbe I, Eagleson PS. 1989.. Probabilistic representation of the temporal rainfall process by a modified Neyman-Scott rectangular pulses model: parameter estimation and validation. . Water Resourc. Res. 25:(2):295302
    [Crossref] [Google Scholar]
  36. Evin G, Favre AC. 2008.. A new rainfall model based on the Neyman–Scott process using cubic copulas. . Water Resourc. Res. 44:(3):W03433
    [Crossref] [Google Scholar]
  37. Evin G, Favre AC. 2013.. Further developments of a transient Poisson-cluster model for rainfall. . Stoch. Environ. Res. Risk Assess. 27:(4):83147
    [Crossref] [Google Scholar]
  38. Favre AC, Musy A, Morgenthaler S. 2002.. Two-site modeling of rainfall based on the Neyman–Scott process. . Water Resourc. Res. 38:(12):4317
    [Crossref] [Google Scholar]
  39. Fearnhead P, Prangle D. 2012.. Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation. . J. R. Stat. Soc. Ser. B 74:(3):41974
    [Crossref] [Google Scholar]
  40. Forsythe N, Fowler H, Blenkinsop S, Burton A, Kilsby C, et al. 2014.. Application of a stochastic weather generator to assess climate change impacts in a semi-arid climate: the Upper Indus Basin. . J. Hydrol. 517::101934
    [Crossref] [Google Scholar]
  41. Fowler HJ, Blenkinsop S, Tebaldi C. 2007.. Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. . Int. J. Climatol. 27:(12):154778
    [Crossref] [Google Scholar]
  42. Fowler HJ, Kilsby CG, O'Connell PE, Burton A. 2005.. A weather-type conditioned multi-site stochastic rainfall model for the generation of scenarios of climatic variability and change. . J. Hydrol. 308:(1):5066
    [Crossref] [Google Scholar]
  43. Gaume E, Mouhous N, Andrieu H. 2007.. Rainfall stochastic disaggregation models: calibration and validation of a multiplicative cascade model. . Adv. Water Resourc. 30:(5):130119
    [Crossref] [Google Scholar]
  44. Gires A, Onof C, Maksimovic C, Schertzer D, Tchiguirinskaia I, Simoes N. 2012.. Quantifying the impact of small scale unmeasured rainfall variability on urban runoff through multifractal downscaling: a case study. . J. Hydrol. 442–443::11728
    [Crossref] [Google Scholar]
  45. Guillot G, Lebel T. 1999.. Disaggregation of Sahelian mesoscale convective system rain fields: further developments and validation. . J. Geophys. Res. Atmos. 104:(D24):3153351
    [Crossref] [Google Scholar]
  46. Jesus J, Chandler RE. 2011.. Estimating functions and the generalized method of moments. . Interface Focus 1:(6):87185
    [Crossref] [Google Scholar]
  47. Jesus J, Chandler RE. 2017.. Inference with the Whittle likelihood: a tractable approach using estimating functions. . J. Time Ser. Anal. 38:(2):20424
    [Crossref] [Google Scholar]
  48. Jones PD, Kilsby CG, Harpham C, Glenis V, Burton A. 2009.. UK climate projections science report: projections of future daily climate for the UK from the weather generator. Tech. Rep. , Univ. Newcastle, Newcastle upon Tyne, UK:
    [Google Scholar]
  49. Kaczmarska J, Isham V, Onof C. 2014.. Point process models for fine-resolution rainfall. . Hydrol. Sci. J. 59:(11):197291
    [Crossref] [Google Scholar]
  50. Kaczmarska JM. 2013.. Single-site point process-based rainfall models in a nonstationary climate. PhD Thesis , Univ. Coll. London, London, UK:
    [Google Scholar]
  51. Kaczmarska JM, Isham VS, Northrop P. 2015.. Local generalised method of moments: an application to point process-based rainfall models. . Environmetrics 26:(4):31225
    [Crossref] [Google Scholar]
  52. Kakou A. 1997.. Point process based models for rainfall. PhD Thesis , Univ. Coll. London, London, UK:
    [Google Scholar]
  53. Kilsby C, Jones P, Burton A, Ford A, Fowler H, et al. 2007.. A daily weather generator for use in climate change studies. . Environ. Model. Softw. 22:(12):170519
    [Crossref] [Google Scholar]
  54. Kim D, Cho H, Onof C, Choi M. 2017a.. Let-It-Rain: a web application for stochastic point rainfall generation at ungaged basins and its applicability in runoff and flood modeling. . Statistical Software. http://www.letitrain.info/
    [Google Scholar]
  55. Kim D, Cho H, Onof C, Choi M. 2017b.. Let-It-Rain: a web application for stochastic point rainfall generation at ungaged basins and its applicability in runoff and flood modeling. . Stoch. Environ. Res. Risk Assess. 31:(4):102343
    [Crossref] [Google Scholar]
  56. Kim D, Olivera F. 2012.. Relative importance of the different rainfall statistics in the calibration of stochastic rainfall generation models. . J. Hydrol. Eng. 17:(3):36876
    [Crossref] [Google Scholar]
  57. Kistler R, Kalnay E, Collins W, Saha S, White G, et al. 2001.. The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. . Bull. Am. Meteorol. Soc. 82:(2):24768
    [Crossref] [Google Scholar]
  58. Koutsoyiannis D, Onof C. 2000.. HYETOS - a computer program for stochastic disaggregation of fine-scale rainfall. . Statistical Software. https://www.itia.ntua.gr/e/softinfo/3/
    [Google Scholar]
  59. Koutsoyiannis D, Onof C. 2001.. Rainfall disaggregation using adjusting procedures on a Poisson cluster model. . J. Hydrol. 246:(1):10922
    [Crossref] [Google Scholar]
  60. Lebel T, Braud I, Creutin JD. 1998.. A space-time rainfall disaggregation model adapted to Sahelian mesoscale convective complexes. . Water Resourc. Res. 34:(7):171126
    [Crossref] [Google Scholar]
  61. LeCam L. 1961.. A stochastic description of precipitation. . In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 3, ed. J Neyman , pp. 16586. Berkeley:: Univ. Calif. Press
    [Google Scholar]
  62. Leith NA. 2008.. Single-site rainfall generation under scenarios of climate change. PhD Thesis , Univ. Coll. London, London, UK:
    [Google Scholar]
  63. Leonard M, Lambert MF, Metcalfe AV, Cowpertwait PSP. 2008.. A space-time Neyman–Scott rainfall model with defined storm extent. . Water Resourc. Res. 44:(9):W09402
    [Crossref] [Google Scholar]
  64. Lovejoy S, Schertzer D. 1990.. Multifractals, universality classes and satellite and radar measurements of cloud and rain fields. . J. Geophys. Res. Atmos. 95:(D3):202134
    [Crossref] [Google Scholar]
  65. Marani M, Zanetti S. 2007.. Downscaling rainfall temporal variability. . Water Resourc. Res. 43:(9):W09415
    [Crossref] [Google Scholar]
  66. Maraun D, Wetterhall F, Ireson AM, Chandler RE, Kendon EJ, et al. 2010.. Precipitation downscaling under climate change: recent developments to bridge the gap between dynamical models and the end user. . Rev. Geophys. 48:(3):RG3003
    [Crossref] [Google Scholar]
  67. Muñoz Lopez C, Wang LP, Willems P. 2023.. Statistical characterization of rainfall fields based upon a 12-year high-resolution radar archive of Belgium. . Atmos. Res. 283::106544
    [Crossref] [Google Scholar]
  68. Northrop P. 1998.. A clustered spatial-temporal model of rainfall. . Proc. R. Soc. Lond. Ser. A 454:(1975):187588
    [Google Scholar]
  69. Northrop PJ. 2006.. Estimating the parameters of rainfall models using maximum marginal likelihood. . Student 5:(3/4):17383
    [Google Scholar]
  70. Ochoa-Rodriguez S, Wang LP, Willems P, Onof C. 2019.. A review of radar-rain gauge data merging methods and their potential for urban hydrological applications. . Water Resourc. Res. 55:(8):635691
    [Crossref] [Google Scholar]
  71. Olsson J. 1998.. Evaluation of a scaling cascade model for temporal rainfall disaggregation. . Hydrol. Earth Syst. Sci. 2:(1):1930
    [Crossref] [Google Scholar]
  72. Onibon H, Lebel T, Afouda A, Guillot G. 2004.. Gibbs sampling for conditional spatial disaggregation of rain fields. . Water Resourc. Res. 40:(8):W08401
    [Crossref] [Google Scholar]
  73. Onof C, Arnbjerg-Nielsen K. 2009.. Quantification of anticipated future changes in high resolution design rainfall for urban areas. . Atmos. Res. 92:(3):35063
    [Crossref] [Google Scholar]
  74. Onof C, Chandler RE, Kakou A, Northrop P, Wheater HS, Isham V. 2000.. Rainfall modelling using Poisson-cluster processes: a review of developments. . Stoch. Environ. Res. Risk Assess. 14:(6):384411
    [Crossref] [Google Scholar]
  75. Onof C, Wheater HS, Isham V. 1994.. Note on the analytical expression of the inter-event time characteristics for Bartlett–Lewis type rainfall models. . J. Hydrol. 157:(1):197210
    [Crossref] [Google Scholar]
  76. Park J, Cross D, Onof C, Chen Y, Kim D. 2021.. A simple scheme to adjust Poisson cluster rectangular pulse rainfall models for improved performance at sub-hourly timescales. . J. Hydrol. 598::126296
    [Crossref] [Google Scholar]
  77. Pathiraja S, Westra S, Sharma A. 2012.. Why continuous simulation? The role of antecedent moisture in design flood estimation. . Water Resourc. Res. 48:(6):W06534
    [Crossref] [Google Scholar]
  78. Pecknold S, Lovejoy S, Schertzer D. 2001.. Stratified multifractal magnetization and surface geomagnetic fields—II. Multifractal analysis and simulations. . Geophys. J. Int. 145:(1):12744
    [Crossref] [Google Scholar]
  79. Ramesh NI. 1998.. Temporal modelling of short-term rainfall using Cox processes. . Environmetrics 9:(6):62943
    [Crossref] [Google Scholar]
  80. Ramesh NI, Garthwaite AP, Onof C. 2018.. A doubly stochastic rainfall model with exponentially decaying pulses. . Stoch. Environ. Res. Risk Assess. 32:(6):164564
    [Crossref] [Google Scholar]
  81. Ramesh NI, Onof C, Xie D. 2012.. Doubly stochastic Poisson process models for precipitation at fine time-scales. . Adv. Water Resourc. 45::5864
    [Crossref] [Google Scholar]
  82. Ramesh NI, Thayakaran R, Onof C. 2013.. Multi-site doubly stochastic Poisson process models for fine-scale rainfall. . Stoch. Environ. Res. Risk Assess. 27:(6):138396
    [Crossref] [Google Scholar]
  83. Rodriguez-Iturbe I, Cox DR, Isham V. 1987.. Some models for rainfall based on stochastic point processes. . Proc. R. Soc. Lond. Ser. A 410:(1839):26988
    [Crossref] [Google Scholar]
  84. Rodriguez-Iturbe I, Cox DR, Isham V. 1988.. A point process model for rainfall: further developments. . Proc. R. Soc. Lond. Ser. A 417:(1853):28398
    [Crossref] [Google Scholar]
  85. Rodriguez-Iturbe I, Gupta VK, Waymire E. 1984.. Scale considerations in the modeling of temporal rainfall. . Water Resourc. Res. 20:(11):161119
    [Crossref] [Google Scholar]
  86. Saha R, Testik FY, Testik MC. 2021.. Assessment of OTT Pluvio2 rain intensity measurements. . J. Atmos. Oceanic Technol. 38:(4):897908
    [Crossref] [Google Scholar]
  87. Schertzer D, Lovejoy S. 1987.. Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes. . J. Geophys. Res. Atmos. 92:(D8):9693714
    [Crossref] [Google Scholar]
  88. Schertzer D, Lovejoy S. 1997.. Universal multifractals do exist!: Comments on “A statistical analysis of mesoscale rainfall as a random cascade. .” J. Appl. Meteorol. 36:(9):1296303
    [Crossref] [Google Scholar]
  89. Schertzer D, Lovejoy S. 2011.. Multifractals, generalized scale invariance and complexity in geophysics. . Int. J. Bifurcat. Chaos 21:(12):341756
    [Crossref] [Google Scholar]
  90. Segond ML, Onof C, Wheater H. 2006.. Spatial–temporal disaggregation of daily rainfall from a generalized linear model. . J. Hydrol. 331:(3):67489
    [Crossref] [Google Scholar]
  91. Segond ML, Wheater HS, Onof C. 2007.. The significance of spatial rainfall representation for flood runoff estimation: a numerical evaluation based on the Lee catchment, UK. . J. Hydrol. 347:(1–2):11631
    [Crossref] [Google Scholar]
  92. Thayakaran R, Ramesh NI. 2013a.. Markov modulated Poisson process models incorporating covariates for rainfall intensity. . Water Sci. Technol. 67:(8):178692
    [Crossref] [Google Scholar]
  93. Thayakaran R, Ramesh NI. 2013b.. Multivariate models for rainfall based on Markov modulated Poisson processes. . Hydrol. Res. 44:(4):63143
    [Crossref] [Google Scholar]
  94. Verhoest NEC, Vandenberghe S, Cabus P, Onof C, Meca-Figueras T, Jameleddine S. 2010.. Are stochastic point rainfall models able to preserve extreme flood statistics?. Hydrol. Process. 24:(23):343945
    [Crossref] [Google Scholar]
  95. Vischel T, Lebel T, Massuel S, Cappelaere B. 2009.. Conditional simulation schemes of rain fields and their application to rainfall–runoff modeling studies in the Sahel. . J. Hydrol. 375:(1):27386
    [Crossref] [Google Scholar]
  96. Vu T, Mishra A. 2020.. Performance of multisite stochastic precipitation models for a tropical monsoon region. . Stoch. Environ. Res. Risk Assess. 34::215977
    [Crossref] [Google Scholar]
  97. Wasko C, Pui A, Sharma A, Mehrotra R, Jeremiah E. 2015.. Representing low-frequency variability in continuous rainfall simulations: a hierarchical random Bartlett Lewis continuous rainfall generation model. . Water Resourc. Res. 51:(12):999510007
    [Crossref] [Google Scholar]
  98. Wasko C, Sharma A. 2017.. Continuous rainfall generation for a warmer climate using observed temperature sensitivities. . J. Hydrol. 544::57590
    [Crossref] [Google Scholar]
  99. Waymire E, Gupta VK. 1981.. The mathematical structure of rainfall representations: 1. A review of the stochastic rainfall models. . Water Resourc. Res. 17:(5):126172
    [Crossref] [Google Scholar]
  100. Waymire E, Gupta VK, Rodriguez-Iturbe I. 1984.. A spectral theory of rainfall intensity at the meso-β scale. . Water Resourc. Res. 20:(10):145365
    [Crossref] [Google Scholar]
  101. Wheater HS. 2002.. Progress in and prospects for fluvial flood modelling. . Philos. Trans. R. Soc. A. 360:(1796):140931
    [Crossref] [Google Scholar]
  102. Wheater HS, Isham VS, Chandler RE, Onof CJ, Stewart EJ. 2006.. Improved methods for national spatial-temporal rainfall and evaporation modelling for BSM. R&D Tech. Rep. FD2105/TR , Dep. Env. Food Rural Aff., London:
    [Google Scholar]
  103. Wheater HS, Isham VS, Cox DR, Chandler RE, Kakou A, et al. 2000.. Spatial-temporal rainfall fields: modelling and statistical aspects. . Hydrol. Earth Syst. Sci. 4:(4):581601
    [Crossref] [Google Scholar]
  104. Wilcox C, Aly C, Vischel T, Panthou G, Blanchet J, et al. 2021.. Stochastorm: a stochastic rainfall simulator for convective storms. . J. Hydrometeorol. 22:(2):387404
    [Crossref] [Google Scholar]
  105. Wilks D. 1998.. Multisite generalization of a daily stochastic precipitation generation model. . J. Hydrol. 210:(1):17891
    [Crossref] [Google Scholar]
  106. Willems P. 2001.. A spatial rainfall generator for small spatial scales. . J. Hydrol. 252:(1):12644
    [Crossref] [Google Scholar]
  107. Yang C, Chandler RE, Isham VS, Wheater HS. 2005.. Spatial-temporal rainfall simulation using generalized linear models. . Water Resourc. Res. 41:(11):W11415
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-statistics-040622-023838
Loading
/content/journals/10.1146/annurev-statistics-040622-023838
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error