1932

Abstract

Modern astronomy has been rapidly increasing our ability to see deeper into the Universe, acquiring enormous samples of cosmic populations. Gaining astrophysical insights from these data sets requires a wide range of sophisticated statistical and machine learning methods. Long-standing problems in cosmology include characterization of galaxy clustering and estimation of galaxy distances from photometric colors. Bayesian inference, central to linking astronomical data to nonlinear astrophysical models, addresses problems in solar physics, properties of star clusters, and exoplanet systems. Likelihood-free methods are growing in importance. Detection of faint signals in complicated noise is needed to find periodic behaviors in stars and detect explosive gravitational wave events. Open issues concern treatment of heteroscedastic measurement errors and understanding probability distributions characterizing astrophysical systems. The field of astrostatistics needsincreased collaboration with statisticians in the design and analysis stages of research projects, and joint development of new statistical methodologies. This collaboration will yield more astrophysical insights into astronomical populations and the cosmos itself.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-statistics-042720-112045
2021-03-07
2024-09-21
Loading full text...

Full text loading...

/deliver/fulltext/statistics/8/1/annurev-statistics-042720-112045.html?itemId=/content/journals/10.1146/annurev-statistics-042720-112045&mimeType=html&fmt=ahah

Literature Cited

  1. Abbott BP, Abbott R, Abbott D, Acernese F, Adams C et al. 2017. Multi-messenger observations of a binary neutron star merger. Astrophys. J. 848:L12
    [Google Scholar]
  2. Akeret J, Refregier A, Amara A, Seehars S, Hasner C 2015. Approximate Bayesian computation for forward modeling in cosmology. J. Cosmol. Astropart. Phys. 2015:043
    [Google Scholar]
  3. Alsing J, Charnock T, Feeney S, Wandelt B 2019. Fast likelihood-free cosmology with neural density estimators and active learning. Mon. Not. R. Astron. Soc. 488:4440–58
    [Google Scholar]
  4. Alsing J, Wandelt B. 2018. Generalized massive optimal data compression. Mon. Not. R. Astron. Soc. 476:L60–64
    [Google Scholar]
  5. Alsing J, Wandelt B, Feeney S 2018. Massive optimal data compression and density estimation for scalable, likelihood-free inference in cosmology. Mon. Not. R. Astron. Soc. 477:2874–85
    [Google Scholar]
  6. Arzoumanian Z, Brazier A, Burke-Spolaor S, Chamberlin S, Chatterjee S et al. 2015. The NANOGrav nine-year data set: observations, arrival time measurements, and analysis of 37 millisecond pulsars. Astrophys. J. 813:65
    [Google Scholar]
  7. Arzoumanian Z, Brazier A, Burke-Spolaor S, Chamberlin S, Chatterjee S et al. 2018. The NANOGrav 11-year data set: high-precision timing of 45 millisecond pulsars. Astrophys. J. 235:37
    [Google Scholar]
  8. Asensio Ramos A. 2006. The minimum description length principle and model selection in spectropolarimetry. Astrophys. J. 646:1445–51
    [Google Scholar]
  9. Asensio Ramos A. 2009. Evidence for quasi-isotropic magnetic fields from Hinode quiet-sun observations. Astrophys. J. 701:1032–43
    [Google Scholar]
  10. Baddeley A, Rubak E, Turner R 2015. Spatial Point Patterns: Methodology and Applications with R Boca Raton, FL: Chapman & Hall/CRC
    [Google Scholar]
  11. Baluev RV. 2008. Assessing the statistical significance of periodogram peaks. Mon. Not. R. Astron. Soc. 385:1279–85
    [Google Scholar]
  12. Barchi PH, da Costa FG, Sautter R, Moura TC, Stalder DH et al. 2017. Improving galaxy morphology with machine learning. J. Comput. Interdiscip. Sci. 7:114
    [Google Scholar]
  13. Barrow JD, Bhavsar SP, Sonoda DH 1985. Minimal spanning trees, filaments and galaxy clustering. Mon. Not. R. Astron. Soc. 216:17–35
    [Google Scholar]
  14. Beattie JR, Federrath C. 2019. Filaments and striations: anisotropies in observed, supersonic, highly magnetized turbulent clouds. Mon. Not. R. Astron. Soc. 492:668–85
    [Google Scholar]
  15. Beck R, Dobos L, Budavári T, Szalay AS, Csabai I 2016. Photometric redshifts for the SDSS data release 12. Mon. Not. R. Astron. Soc. 460:1371–81
    [Google Scholar]
  16. Beck R, Lin CA, Ishida EEO, Gieseke F, de Souza RS et al. 2017. On the realistic validation of photometric redshifts. Mon. Not. R. Astron. Soc. 468:4323–39
    [Google Scholar]
  17. Benítez N. 2000. Bayesian photometric redshift estimation. Astrophys. J. 536:571–83
    [Google Scholar]
  18. Berry SM, Carroll RJ, Ruppert D 2002. Bayesian smoothing and regression splines for measurement error problems. J. Am. Stat. Assoc. 97:160–69
    [Google Scholar]
  19. Bertin E, Arnouts S. 1996. SExtractor: software for source extraction. Astron. Astrophys. 117:393–404
    [Google Scholar]
  20. Bond NA, Strauss MA, Cen R 2010. Crawling the cosmic network: identifying and quantifying filamentary structure. Mon. Not. R. Astron. Soc. 409:156–68
    [Google Scholar]
  21. Bossini D, Vallenari A, Bragaglia A, Cantat-Gaudin T, Sordo R et al. 2019. Age determination for 269 Gaia DR2 open clusters. Astron. Astrophys. 623:A108
    [Google Scholar]
  22. Boucaud A, Huertas-Company M, Heneka C, Ishida EEO, Sedaghat N et al. 2020. Photometry of high-redshift blended galaxies using deep learning. Mon. Not. R. Astron. Soc. 491:2481–95
    [Google Scholar]
  23. Box GEP, Jenkins GM, Reinsel GC, Ljung GM 2015. Time Series Analysis: Forecasting and Control New York: Wiley. , 5th. ed.
    [Google Scholar]
  24. Bretthorst GL. 2003. Frequency estimation and generalized Lomb-Scargle periodograms. Statistical Challenges in Astronomy ED Feigelson, GJ Babu 309–29 New York: Springer
    [Google Scholar]
  25. Budavári T. 2009. A unified framework for photometric redshifts. Astrophys. J. 695:747–54
    [Google Scholar]
  26. Cabero M, Lundgren A, Nitz AH, Dent T, Barker D et al. 2019. Blip glitches in Advanced LIGO data. Class. Quantum Gravity 36:155010
    [Google Scholar]
  27. Caceres GA, Feigelson ED, Jogesh Babu G, Bahamonde N, Christen A et al. 2019. Autoregressive planet search: methodology. Astron. J. 158:57
    [Google Scholar]
  28. Cameron E, Pettitt AN. 2012. Approximate Bayesian computation for astronomical model analysis: a case study in galaxy demographics and morphological transformation at high redshift. Mon. Not. R. Astron. Soc. 425:44–65
    [Google Scholar]
  29. Cantat-Gaudin T, Krone-Martins A, Sedaghat N, Farahi A, de Souza RS et al. 2019. Gaia DR2 unravels incompleteness of nearby cluster population: new open clusters in the direction of Perseus. Astron. Astrophys. 624:A126
    [Google Scholar]
  30. Carliles S, Budavári T, Heinis S, Priebe C, Szalay AS 2010. Random forests for photometric redshifts. Astrophys. J. 712:511–15
    [Google Scholar]
  31. Carroll R, Ruppert D, Stefanski L, Crainiceanu C 2006. Measurement Error in Nonlinear Models: A Modern Perspective Boca Raton, FL: Chapman & Hall/CRC. , 2nd. ed.
    [Google Scholar]
  32. Cavuoti S, Brescia M, Vellucci C, Longo G, Amaro V, Tortora C 2016. Probability density estimation of photometric redshifts based on machine learning. 2016 IEEE Symposium Series on Computational Intelligence (SSCI) Red Hook, NY: Curran
    [Google Scholar]
  33. Charnock T, Lavaux G, Wandelt BD 2018. Automatic physical inference with information maximizing neural networks. Phys. Rev. D 97:083004
    [Google Scholar]
  34. Chen YC, Ho S, Freeman PE, Genovese CR, Wasserman L 2015. Cosmic web reconstruction through density ridges: method and algorithm. Mon. Not. R. Astron. Soc. 454:1140–56
    [Google Scholar]
  35. Childress MJ, Lidman C, Davis TM, Tucker BE, Asorey J et al. 2017. OzDES multifibre spectroscopy for the Dark Energy Survey: 3-yr results and first data release. Mon. Not. R. Astron. Soc. 472:273–88
    [Google Scholar]
  36. Cisewski-Kehe J, Weller G, Schafer C 2019. A preferential attachment model for the stellar initial mass function. Electron. J. Stat. 13:1580–607
    [Google Scholar]
  37. Clyde MA, Berger JO, Bullard F, Ford EB, Jefferys WH et al. 2007. Current challenges in Bayesian model choice. Statistical Challenges in Modern Astronomy IV, eds. GJ Babu, ED Feigelson 224–240 San Francisco: ASP
    [Google Scholar]
  38. Collier MR. 1993. On generating kappa-like distribution functions using velocity space Lévy flights. Geophys. Res. Lett. 20:1531–34
    [Google Scholar]
  39. Dahlen T, Mobasher B, Faber SM, Ferguson HC, Barro G et al. 2013. A critical assessment of photometric redshift methods: a CANDELS investigation. Astrophys. J. 775:93
    [Google Scholar]
  40. Davies FB, Hennawi JF, Eilers AC, Lukić Z 2018. A new method to measure the post-reionization ionizing background from the joint distribution of Lyα and Lyβ forest transmission. Astrophys. J. 855:106
    [Google Scholar]
  41. de Lapparent V, Geller MJ, Huchra JP 1986. A slice of the Universe. Astrophys. J. Lett. 302:L1–5
    [Google Scholar]
  42. de Souza RS, Cameron E, Killedar M, Hilbe J, Vilalta R et al. 2015a. The overlooked potential of generalized linear models in astronomy—I: binomial regression. Astron. Comput. 12:21–32
    [Google Scholar]
  43. de Souza RS, Hilbe JM, Buelens B, Riggs JD, Cameron E et al. 2015b. The overlooked potential of generalized linear models in astronomy—III. Bayesian negative binomial regression and globular cluster populations. Mon. Not. R. Astron. Soc. 453:1928–40
    [Google Scholar]
  44. Delisle JB, Hara N, Ségransan D 2020. Efficient modeling of correlated noise—I. Statistical significance of periodogram peaks. Astron. Astrophys. 635:A83
    [Google Scholar]
  45. Dieleman S, Willett KW, Dambre J 2015. Rotation-invariant convolutional neural networks for galaxy morphology prediction. Mon. Not. R. Astron. Soc. 450:1441–59
    [Google Scholar]
  46. D'Isanto A, Polsterer KL. 2018. Photometric redshift estimation via deep learning. Generalized and pre-classification-less, image based, fully probabilistic redshifts. Astron. Astrophys. 609:A111
    [Google Scholar]
  47. Domínguez Sánchez H, Huertas-Company M, Bernardi M, Tuccillo D, Fischer JL 2018. Improving galaxy morphologies for SDSS with deep learning. Mon. Not. R. Astron. Soc. 476:3661–76
    [Google Scholar]
  48. Dworetsky MM. 1983. A period-finding method for sparse randomly spaced observations or “How long is a piece of string?”. Mon. Not. R. Astron. Soc. 203:917–24
    [Google Scholar]
  49. Eisenstein DJ, Zehavi I, Hogg DW, Scoccimarro R, Blanton MR et al. 2005. Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys. J. 633:560–74
    [Google Scholar]
  50. Elliott J, de Souza RS, Krone-Martins A, Cameron E, Ishida EEO et al. 2015. The overlooked potential of generalized linear models in astronomy—II: gamma regression and photometric redshifts. Astron. Comput. 10:61–72
    [Google Scholar]
  51. Ford EB. 2005. Quantifying the uncertainty in the orbits of extrasolar planets. Astron. J. 129:1706–17
    [Google Scholar]
  52. Gal Y, Ghahramani Z. 2016. Dropout as a Bayesian approximation: representing model uncertainty in deep learning. Proceedings of The 33rd International Conference on Machine Learning MF Balcan, KQ Weinberger 1050–59 Brookline, MA: Microtome
    [Google Scholar]
  53. Gebhardt K, Bender R, Bower G, Dressler A, Faber SM et al. 2000. A relationship between nuclear black hole mass and galaxy velocity dispersion. Astrophys. J. 539:L13–16
    [Google Scholar]
  54. George D, Huerta EA. 2018. Deep learning for real-time gravitational wave detection and parameter estimation: results with advanced LIGO data. Phys. Lett. B 778:64–70
    [Google Scholar]
  55. Griffin RE 2019. Southern Horizons in Time-Domain Astronomy Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  56. Guedj B. 2019. A primer on PAC-Bayesian learning. Proceedings of the 2nd Congress of the Société Mathématique de France E Breuillard 391–414 Paris: SMF
    [Google Scholar]
  57. Hahn C, Tinker JL, Wetzel A 2017. Star formation quenching timescale of central galaxies in a hierarchical universe. Astrophys. J. 841:6
    [Google Scholar]
  58. Haider M, Steinhauser D, Vogelsberger M, Genel S, Springel V et al. 2016. Large-scale mass distribution in the Illustris simulation. Mon. Not. R. Astron. Soc. 457:3024–35
    [Google Scholar]
  59. Hildebrandt H, Wolf C, Benítez N 2008. A blind test of photometric redshifts on ground-based data. Astron. Astrophys. 480:703–14
    [Google Scholar]
  60. Hsu DC, Ford EB, Ragozzine D, Morehead RC 2018. Improving the accuracy of planet occurrence rates from Kepler using approximate Bayesian computation. Astron. J. 155:205
    [Google Scholar]
  61. Hubble EP. 1930. Distribution of luminosity in elliptical nebulae. Astrophys. J. 71:231–76
    [Google Scholar]
  62. Huertas-Company M, Primack JR, Dekel A, Koo DC, Lapiner S et al. 2018. Deep learning identifies high-z galaxies in a central blue nugget phase in a characteristic mass range. Astrophys. J. 858:114
    [Google Scholar]
  63. Ishida EEO, Beck R, González-Gaitán S, de Souza RS, Krone-Martins A et al. 2019. Optimizing spectroscopic follow-up strategies for supernova photometric classification with active learning. Mon. Not. R. Astron. Soc. 483:2–18
    [Google Scholar]
  64. Ishida EEO, Vitenti SDP, Penna-Lima M, Cisewski J, de Souza RS et al. 2015. COSMOABC: likelihood-free inference via population Monte Carlo approximate Bayesian computation. Astron. Comput. 13:1–11
    [Google Scholar]
  65. Jennings E, Madigan M. 2017. astroABC: an approximate Bayesian computation sequential Monte Carlo sampler for cosmological parameter estimation. Astron. Comput. 19:16–22
    [Google Scholar]
  66. Kacprzak T, Herbel J, Amara A, Réfrégier A 2018. Accelerating approximate Bayesian computation with quantile regression: application to cosmological redshift distributions. J. Cosmol. Astropart. Phys. 2018:042
    [Google Scholar]
  67. Khalifa NE, Hamed Tah M, Hassanien AE, Selim I 2018. Deep Galaxy V2: robust deep convolutional neural networks for galaxy morphology classifications. 2018 International Conference on Computing Sciences and Engineering (ICCSE) Red Hook, NY: Curran
    [Google Scholar]
  68. Killedar M, Borgani S, Fabjan D, Dolag K, Granato G et al. 2017. Simulation-based marginal likelihood for cluster strong lensing cosmology. Mon. Not. R. Astron. Soc. 473:1736–50
    [Google Scholar]
  69. Koen C. 1990. Significance testing of periodogram ordinates. Astrophys. J. 348:700
    [Google Scholar]
  70. Kovács G, Zucker S, Mazeh T 2002. A box-fitting algorithm in the search for periodic transits. Astron. Astrophys. 391:369–77
    [Google Scholar]
  71. Lanusse F, Ma Q, Li N, Collett TE, Li CL et al. 2018. CMU DeepLens: deep learning for automatic image-based galaxy-galaxy strong lens finding. Mon. Not. R. Astron. Soc. 473:3895–906
    [Google Scholar]
  72. Leistedt B, Mortlock DJ, Peiris HV 2016. Hierarchical Bayesian inference of galaxy redshift distributions from photometric surveys. Mon. Not. R. Astron. Soc. 460:4258–67
    [Google Scholar]
  73. Lin CA, Kilbinger M. 2015. A new model to predict weak-lensing peak counts. II. Parameter constraint strategies. Astron. Astrophys. 583:A70
    [Google Scholar]
  74. Lynden-Bell D, Faber SM, Burstein D, Davies RL, Dressler A et al. 1988. Photometry and spectroscopy of elliptical galaxies. V. Galaxy streaming toward the new supergalactic center. Astrophys. J. 326:19–49
    [Google Scholar]
  75. Mancone CL, Gonzalez AH, Moustakas LA, Price A 2013. PyGFit: a tool for extracting PSF matched photometry. Publ. Astron. Soc. Pac. 125:1514
    [Google Scholar]
  76. Maschberger T. 2013. On the function describing the stellar initial mass function. Mon. Not. R. Astron. Soc. 429:1725–33
    [Google Scholar]
  77. Mayor M, Queloz D. 1995. A Jupiter-mass companion to a solar-type star. Nature 378:355–59
    [Google Scholar]
  78. McIver J. 2012. Data quality studies of enhanced interferometric gravitational wave detectors. Class. Quantum Grav. 29:124010
    [Google Scholar]
  79. Melchior P, Moolekamp F, Jerdee M, Armstrong R, Sun AL et al. 2018. SCARLET: source separation in multi-band images by constrained matrix factorization. Astron. Comput. 24:129–42
    [Google Scholar]
  80. Menou K. 2019. Morpho-photometric redshifts. Mon. Not. R. Astron. Soc. 489:4802–8
    [Google Scholar]
  81. Men'shchikov A, André P, Didelon P, Könyves V, Schneider N et al. 2010. Filamentary structures and compact objects in the Aquila and Polaris clouds observed by Herschel. Astron. Astrophys. 518:L103
    [Google Scholar]
  82. Mingarelli CMF, Lazio TJW, Sesana A, Greene JE, Ellis JA et al. 2017. The local nanohertz gravitational-wave landscape from supermassive black hole binaries. Nat. Astron. 1:886–92
    [Google Scholar]
  83. Moews B, Schmitz MA, Lawler AJ, Zuntz J, Malz AI et al. 2020. Ridges in the Dark Energy Survey for cosmic trough identification. arXiv:2005.08583 [astro-ph.CO]
  84. Mortier A, Faria JP, Correia CM, Santerne A, Santos NC 2015. BGLS: A Bayesian formalism for the generalised Lomb-Scargle periodogram. Astron. Astrophys. 573:A101
    [Google Scholar]
  85. Nelson D, Pillepich A, Genel S, Vogelsberger M, Springel V et al. 2015. The Illustris simulation: public data release. Astron. Comput. 13:12–37
    [Google Scholar]
  86. Neyman J, Scott EL. 1952. A theory of the spatial distribution of galaxies. Astrophys. J. 116:144–63
    [Google Scholar]
  87. Neyman J, Scott EL. 1958. Statistical approach to problems of cosmology. J. R. Stat. Soc. Ser. B 20:1–29
    [Google Scholar]
  88. Novikov D, Colombi S, Doré O 2006. Skeleton as a probe of the cosmic web: the two-dimensional case. Mon. Not. R. Astron. Soc. 366:1201–16
    [Google Scholar]
  89. Orosz JA, Welsh WF, Haghighipour N, Quarles B, Short DR et al. 2019. Discovery of a third transiting planet in the Kepler-47 circumbinary system. Astron. J. 157:174
    [Google Scholar]
  90. Pasquet J, Bertin E, Treyer M, Arnouts S, Fouchez D 2019. Photometric redshifts from SDSS images using a convolutional neural network. Astron. Astrophys. 621:A26
    [Google Scholar]
  91. Pearson K, Bell J. 1908. On some points with regard to the light-fluctuation of variable stars. Mon. Not. R. Astron. Soc. 69:128–36
    [Google Scholar]
  92. Peebles PJE. 1973. Statistical analysis of catalogs of extragalactic objects. I. Theory. Astrophys. J. 185:413–40
    [Google Scholar]
  93. Percival DB, Walden AT. 1993. Spectral Analysis for Physical Applications Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  94. PLAsTiCC team, Allam Tarek J, Bahmanyar A, Biswas R, Dai M et al. 2018. The photometric LSST astronomical time-series classification challenge (PLAsTiCC): data set. arXiv:1810.00001 [astro-ph.IM]
  95. Platen E, Van De Weygaert R, Jones BJT 2007. A cosmic watershed: the WVF void detection technique. Mon. Not. R. Astron. Soc. 380:551–70
    [Google Scholar]
  96. Rau MM, Seitz S, Brimioulle F, Frank E, Friedrich O et al. 2015. Accurate photometric redshift probability density estimation—method comparison and application. Mon. Not. R. Astron. Soc. 452:3710–25
    [Google Scholar]
  97. Reed W, Jorgensen M. 2004. The double pareto-lognormal distribution—a new parametric model for size distributions. Commun. Stat. Theory Methods 8:1733–53
    [Google Scholar]
  98. Reiman DM, Göhre BE. 2019. Deblending galaxy superpositions with branched generative adversarial networks. Mon. Not. R. Astron. Soc. 485:2617–27
    [Google Scholar]
  99. Revsbech EA, Trotta R, van Dyk DA 2018. STACCATO: a novel solution to supernova photometric classification with biased training sets. Mon. Not. R. Astron. Soc. 473:3969–86
    [Google Scholar]
  100. Riechers DA, Pavesi R, Sharon CE, Hodge JA, Decarli R et al. 2019. COLDz: shape of the CO luminosity function at high redshift and the cold gas history of the Universe. Astrophys. J. 872:7
    [Google Scholar]
  101. Ronneberger O, Fischer P, Brox T 2015. U-net: convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015 N Navab, J Hornegger, WM Wells, AF Frangi 234–241 New York: Springer
    [Google Scholar]
  102. Sahni V, Sathyaprakash BS, Shandarin SF 1998. Shapefinders: a new shape diagnostic for large-scale structure. Astrophys. J. Lett. 495:L5–8
    [Google Scholar]
  103. Salvato M, Ilbert O, Hoyle B 2019. The many flavours of photometric redshifts. Nat. Astron. 3:212–22
    [Google Scholar]
  104. Scargle JD. 1982. Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 263:835–53
    [Google Scholar]
  105. Schafer CM. 2015. A framework for statistical inference in astrophysics. Annu. Rev. Stat. Appl. 2:141–62
    [Google Scholar]
  106. Schafer CM, Freeman PE. 2012. Likelihood-free inference in cosmology: potential for the estimation of luminosity functions. Statistical Challenges in Modern Astronomy V E Feigelson, G Jogesh Babu 3–19 New York: Springer
    [Google Scholar]
  107. Schawinski K, Zhang C, Zhang H, Fowler L, Santhanam GK 2017. Generative adversarial networks recover features in astrophysical images of galaxies beyond the deconvolution limit. Mon. Not. R. Astron. Soc. 467:L110–14
    [Google Scholar]
  108. Schlesinger F. 1910. The determination of the orbit of a spectroscopic binary by the method of least-squares. Publ. Allegh. Obs. Univ. Pittsbg. 1:33–44
    [Google Scholar]
  109. Schmidt SJ, Malz AI, Soo JYH, Almosallam IA, Brescia M et al. 2020. Evaluation of probabilistic photometric redshift estimation approaches for LSST. arXiv:2001.03621 [astro-ph.CO]
  110. Schmitz MA, Heitz M, Bonneel N, Ngol F, Coeurjolly D et al. 2018. Wasserstein dictionary learning: optimal transport-based unsupervised nonlinear dictionary learning. SIAM J. Imaging Sci. 11:643–78
    [Google Scholar]
  111. Schwarzenberg-Czerny A. 1996. Fast and statistically optimal period search in uneven sampled observations. Astrophys. J. Lett. 460:L107–10
    [Google Scholar]
  112. Settles B. 2012. Active Learning Williston, VT: Morgan & Claypool
    [Google Scholar]
  113. Sharma S. 2017. Markov Chain Monte Carlo methods for Bayesian data analysis in astronomy. Annu. Rev. Astron. Astrophys. 55:213–59
    [Google Scholar]
  114. Sheynin OB. 1974. On the prehistory of the theory of probability. Arch. Hist. Exact Sci. 12:97–141
    [Google Scholar]
  115. Springel V, White SDM, Jenkins A, Frenk CS, Yoshida N et al. 2005. Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 435:629–36
    [Google Scholar]
  116. Starck JL, Siebenmorgen R, Gredel R 1997. Spectral analysis using the wavelet transform. Astrophys. J. 482:1011–20
    [Google Scholar]
  117. Stellingwerf RF. 1978. Period determination using phase dispersion minimization. Astrophys. J. 224:953–60
    [Google Scholar]
  118. Stigler S. 1986. The History of Statistics: The Measurement of Uncertainty Before 1900 Cambridge, MA: Harvard Univ. Press
    [Google Scholar]
  119. Stoica RS, Martínez VJ, Saar E 2010. Filaments in observed and mock galaxy catalogues. Astron. Astrophys. 510:A38
    [Google Scholar]
  120. Sulis S, Mary D, Bigot L 2017. A bootstrap method for sinusoid detection in colored noise and uneven sampling. Application to exoplanet detection. 25th European Signal Processing Conference (EUSIPCO)1095–99 Red Hook, NY: Curran
    [Google Scholar]
  121. Süveges M, Guy LP, Eyer L, Cuypers J, Holl B et al. 2015. A comparative study of four significance measures for periodicity detection in astronomical surveys. Mon. Not. R. Astron. Soc. 450:2052–66
    [Google Scholar]
  122. Taylor SR, Vallisneri M, Ellis JA, Mingarelli CMF, Lazio TJW, van Haasteren R 2016. Are we there yet? Time to detection of nanohertz gravitational waves based on pulsar-timing array limits. Astrophys. J. 819:L6
    [Google Scholar]
  123. van Dyk DA, DeGennaro S, Stein N, Jefferys WH, von Hippel T 2009. Statistical analysis of stellar evolution. Ann. Appl. Stat. 3:117–43
    [Google Scholar]
  124. van Haasteren R, Vallisneri M 2014. New advances in the Gaussian-process approach to pulsar-timing data analysis. Phys. Rev. D 90:104012
    [Google Scholar]
  125. VanderPlas JT. 2018. Understanding the Lomb–Scargle periodogram. Astrophys. J. 236:16
    [Google Scholar]
  126. Vilalta R, Ishida EEO, Beck R, Sutrisno R, de Souza RS, Mahabal A 2017. Photometric redshift estimation: an active learning approach. 2017 IEEE Symposium Series on Computational Intelligence (SSCI) Red Hook, NY: Curran
    [Google Scholar]
  127. Weyant A, Schafer C, Wood-Vasey WM 2013. Likelihood-free cosmological inference with type Ia supernovae: approximate Bayesian computation for a complete treatment of uncertainty. Astrophys. J. 764:116
    [Google Scholar]
  128. Witzel G, Martinez G, Hora J, Willner SP, Morris MR et al. 2018. Variability timescale and spectral index of Sgr A* in the near infrared: approximate Bayesian computation analysis of the variability of the closest supermassive black hole. Astrophys. J. 863:15
    [Google Scholar]
  129. Zeldovich IB, Einasto J, Shandarin SF 1982. Giant voids in the Universe. Nature 300:407–13
    [Google Scholar]
  130. Zwicky F. 1937. On the masses of nebulae and of clusters of nebulae. Astrophys. J. 86:217–46
    [Google Scholar]
/content/journals/10.1146/annurev-statistics-042720-112045
Loading
/content/journals/10.1146/annurev-statistics-042720-112045
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error