1932

Abstract

This article discusses the stochastic actor-oriented model for analyzing panel data of networks. The model is defined as a continuous-time Markov chain, observed at two or more discrete time moments. It can be regarded as a generalized linear model with a large amount of missing data. Several estimation methods are discussed. After presenting the model for evolution of networks, attention is given to coevolution models. These use the same approach of a continuous-time Markov chain observed at a small number of time points, but now with an extended state space. The state space can be, for example, the combination of a network and nodal variables, or a combination of several networks. This leads to models for the dynamics of multivariate networks. The article emphasizes the approach to modeling and algorithmic issues for estimation; some attention is given to comparison with other models.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-statistics-060116-054035
2017-03-07
2024-04-22
Loading full text...

Full text loading...

/deliver/fulltext/statistics/4/1/annurev-statistics-060116-054035.html?itemId=/content/journals/10.1146/annurev-statistics-060116-054035&mimeType=html&fmt=ahah

Literature Cited

  1. Amati V, Schönenberger F, Snijders T. 2015. Estimation of stochastic actor-oriented models for the evolution of networks by generalized method of moments. J. Soc. Fr. Stat. 156:140–65 [Google Scholar]
  2. Bather J. 1989. Stochastic approximation: a generalisation of the Robbins-Monro procedure. Proc. 4th Prague Symp. Asympt. Stat. ed. P Mandl, M Hušková, 13–27 Prague: Charles Univ. [Google Scholar]
  3. Bolloba`s B. 1985. Random Graphs London: Academic Press
  4. Brandes U, Robins G, McCranie A, Wasserman S. 2013. What is network science?. Netw. Sci. 1:1–15 [Google Scholar]
  5. Burguete J, Gallant AR, Souza G. 1982. On unification of the asymptotic theory of nonlinear econometric models. Econom. Rev. 1:151–90 [Google Scholar]
  6. Durante D, Dunson DB. 2014. Nonparametric Bayes dynamic modelling of relational data. Biometrika 101:883–98 [Google Scholar]
  7. Erdős P, Rényi A. 1960. On the evolution of random graphs. Mat. Kut. Intézet Kőzleményei 5:17–61 [Google Scholar]
  8. Freeman LC. 2004. The Development of Social Network Analysis: A Study in the Sociology of Science Vancouver, BC: Empirical Press
  9. Goldenberg A, Zheng AX, Fienberg SE, Airoldi EM. 2009. A survey of statistical network models. Found. Trends Mach. Learn. 2:129–233 [Google Scholar]
  10. Graham BS. 2015. Methods of identification in social networks. Annu. Rev. Econ. 7:465–85 [Google Scholar]
  11. Greenan CC. 2015. Diffusion of innovations in dynamic networks. J. R. Stat. Soc. A 178:147–66 [Google Scholar]
  12. Hanneke S, Fu W, Xing EP. 2010. Discrete temporal models for social networks. Electron. J. Stat. 4:585–605 [Google Scholar]
  13. Hansen L. 1982. Large sample properties of generalized method of moments estimators. Econometrica 50:1029–54 [Google Scholar]
  14. Hoff PD, Raftery AE, Handcock MS. 2002. Latent space approaches to social network analysis. J. Am. Stat. Assoc. 97:1090–98 [Google Scholar]
  15. Holland PW, Leinhardt S. 1977. A dynamic model for social networks. J. Math. Sociol. 5:5–20 [Google Scholar]
  16. Holme P, Saramäki J. 2012. Temporal networks. Phys. Rep. 519:97–125 [Google Scholar]
  17. Huisman ME, Snijders TAB. 2003. Statistical analysis of longitudinal network data with changing composition. Sociol. Methods Res. 32:253–87 [Google Scholar]
  18. Huitsing G, Snijders TAB, Van Duijn MA, Veenstra R. 2014. Victims, bullies, and their defenders: a longitudinal study of the coevolution of positive and negative networks. Dev. Psychopathol. 26:645–59 [Google Scholar]
  19. Hunter DR. 2007. Curved exponential family models for social networks. Soc. Netw. 29:216–30 [Google Scholar]
  20. Hunter DR, Goodreau SM, Handcock MS. 2008. Goodness of fit of social network models. J. Am. Stat. Assoc. 103:248–58 [Google Scholar]
  21. Jackson MO. 2008. Social and Economic Networks Princeton, NJ: Princeton Univ. Press
  22. Kolaczyk ED. 2009. Statistical Analysis of Network Data: Methods and Models New York: Springer
  23. Koskinen JH, Snijders TAB. 2007. Bayesian inference for dynamic social network data. J. Stat. Plan. Inference 13:3930–38 [Google Scholar]
  24. Koskinen J, Snijders TAB. 2013. Longitudinal models. Exponential Random Graph Models ed. D Lusher, J Koskinen, G Robins 130–40 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  25. Koskinen JH, Caimo A, Lomi A. 2015. Simultaneous modelling of initial conditions and time heterogeneity in dynamic networks: an application to foreign direct investments. Netw. Sci. 3:58–77 [Google Scholar]
  26. Krivitsky PN, Handcock MS. 2014. A separable model for dynamic networks. J. R. Stat. Soc. B 76:29–46 [Google Scholar]
  27. Kushner HJ, Yin GG. 2003. Stochastic Approximation and Recursive Algorithms and Applications New York: Springer 2nd ed.
  28. Lerner J, Indlekofer N, Nick B, Brandes U. 2013. Conditional independence in dynamic networks. J. Math. Psychol. 57:275–83 [Google Scholar]
  29. Lospinoso JA. 2012. Statistical Models for Social Network Dynamics PhD Thesis, Univ: Oxford, Oxford, UK
  30. Louis T. 1982. Finding observed information when using the EM algorithm. J. R. Stat. Soc. B 44:226–33 [Google Scholar]
  31. Lusher D, Koskinen J, Robins G. 2013. Exponential Random Graph Models Cambridge, UK: Cambridge Univ. Press
  32. Maddala G. 1983. Limited-Dependent and Qualitative Variables in Econometrics Cambridge, UK: Cambridge Univ. Press 3rd ed.
  33. Newman M. 2010. Networks: An Introduction Oxford, UK: Oxford Univ. Press
  34. Norris JR. 1997. Markov Chains Cambridge, UK: Cambridge Univ. Press
  35. Orchard T, Woodbury M. 1972. A missing information principle: theory and applications. Proc. 6th Berkeley Symp. Math. Stat. Probab. 1697–715 Berkeley: Univ. Calif. Press [Google Scholar]
  36. Paul S, O'Malley AJ. 2013. Hierarchical longitudinal models of relationships in social networks. Appl. Stat. 62:705–22 [Google Scholar]
  37. Pearson MA, Michell L. 2000. Smoke rings: social network analysis of friendship groups, smoking and drug-taking. Drugs: Educ. Prev. Policy 7:121–37 [Google Scholar]
  38. Polyak BT. 1990. New method of stochastic approximation type. Autom. Remote Control 51:937–46 [Google Scholar]
  39. Rinaldo A, Fienberg SE, Zhou Y. 2009. On the geometry of discrete exponential families with application to exponential random graph models. Electron. J. Stat. 3:446–84 [Google Scholar]
  40. Ripley RM, Snijders TAB, Bóda Z, Vörös A, Preciado P. 2016. Manual for Siena version 4.0. Tech. Rep., Univ. Oxford, Dep. Stat., Nuffield College. https://www.stats.ox.ac.uk/∼snijders/siena/RSiena_Manual.pdf
  41. Robbins H, Monro S. 1951. A stochastic approximation method. Ann. Math. Stat. 22:400–7 [Google Scholar]
  42. Rubinstein R. 1986. The score function approach for sensitivity analysis of computer simulation models. Math. Comput. Simul. 28:351–79 [Google Scholar]
  43. Ruppert D. 1988. Efficient estimation from a slowly convergent Robbins-Monro process. Tech. Rep. 781, Sch. Oper. Res. Ind. Eng., Cornell Univ.
  44. Ruppert D. 1991. Stochastic approximation. Handbook of Sequential Analysis ed. BK Ghosh, PK Sen 503–29 New York: Marcel Dekker [Google Scholar]
  45. Schwabe R, Walk H. 1996. On a stochastic approximation procedure based on averaging. Metrika 44:165–80 [Google Scholar]
  46. Schweinberger M. 2011. Instability, sensitivity, and degeneracy of discrete exponential families. J. Am. Stat. Assoc. 106:1361–70 [Google Scholar]
  47. Schweinberger M, Snijders TAB. 2007. Markov models for digraph panel data: Monte Carlo–based derivative estimation. Comput. Stat. Data Anal. 51:94465–83 [Google Scholar]
  48. Snijders TAB. 2001. The statistical evaluation of social network dynamics. Sociol. Methodol. 31:361–95 [Google Scholar]
  49. Snijders TAB. 2011. Statistical models for social networks. Annu. Rev. Sociol. 37:131–53 [Google Scholar]
  50. Snijders TAB. 2016a. Siena algorithms. Tech. Rep., Univ: Groningen and Univ. Oxford https://www.stats.ox.ac.uk/∼snijders/siena/Siena_algorithms.pdf
  51. Snijders TAB. 2016b. The multiple flavours of multilevel issues for networks. Multilevel Network Analysis for the Social Sciences: Theory, Methods and Applications ed. E Lazega, TAB Snijders, 15–46 New York: Springer [Google Scholar]
  52. Snijders TAB, Doreian P. 2010. Introduction to the special issue on network dynamics. Soc. Netw. 32:1–3 [Google Scholar]
  53. Snijders TAB, Doreian P. 2012. Introduction to the special issue on network dynamics (part 2). Soc. Netw. 34:289–90 [Google Scholar]
  54. Snijders TAB, Koskinen JH, Schweinberger M. 2010a. Maximum likelihood estimation for social network dynamics. Ann. Appl. Stat. 4:567–88 [Google Scholar]
  55. Snijders TAB, Lomi A, Torlò V. 2013. A model for the multiplex dynamics of two-mode and one-mode networks, with an application to employment preference, friendship, and advice. Soc. Netw. 35:265–76 [Google Scholar]
  56. Snijders TAB, Pattison PE, Robins GL, Handcock MS. 2006. New specifications for exponential random graph models. Sociol. Methodol. 36:99–153 [Google Scholar]
  57. Snijders TAB, Pickup M. 2017 Stochastic actor-oriented models for network dynamics. Oxford Handbook of Political Networks ed. JN Victor, M Lubell, AH Montgomery Oxford: Oxford Univ. Press. In press [Google Scholar]
  58. Snijders TAB, Steglich CEG. 2017a Actor-Based Models for Analyzing Network Dynamics Cambridge, UK: Cambridge Univ. Press
  59. Snijders TAB, Steglich CEG. 2017b Social Network Dynamics by Examples Cambridge, UK: Cambridge Univ. Press
  60. Snijders TAB, Steglich CEG, Schweinberger M. 2007. Modeling the co-evolution of networks and behavior. Longitudinal Models in the Behavioral and Related Sciences ed. K van Montfort, H Oud, A Satorra 41–71 Mahwah, NJ: Lawrence Erlbaum [Google Scholar]
  61. Snijders TAB, van de Bunt GG, Steglich C. 2010b. Introduction to actor-based models for network dynamics. Soc. Netw. 32:44–60 [Google Scholar]
  62. Steglich CEG, Snijders TAB, Pearson MA. 2010. Dynamic networks and behavior: separating selection from influence. Sociol. Methodol. 40:329–93 [Google Scholar]
  63. Tanner M, Wong W. 1987. The calculation of posterior distributions by data augmentation (with discussion). J. Am. Stat. Assoc. 82:528–50 [Google Scholar]
  64. Tubaro P, Mounier L, Lazega E, Snijders T. 2017 Dynamics of advice-seeking networks among judges at the commercial court of Paris. Social Network Dynamics by Examples ed. T Snijders, C Steglich Cambridge, UK: Cambridge Univ. Press. In press [Google Scholar]
  65. van Duijn MA, Snijders TAB, Zijlstra BH. 2004. p2: A random effects model with covariates for directed graphs. Stat. Neerl. 58:234–54 [Google Scholar]
  66. Veenstra R, Dijkstra JK, Steglich C, Van Zalk MH. 2013. Network–behavior dynamics. J. Res. Adolesc. 23:3399–412 [Google Scholar]
  67. Wasserman S, Pattison P. 1996. Logit models and logistic regression for social networks: I. An introduction to Markov graphs and p*. Psychometrika 61:401–25 [Google Scholar]
  68. Watts DJ, Strogatz SH. 1998. Collective dynamics of `small-world’ networks. Nature 393:6684440–42 [Google Scholar]
  69. West P, Sweeting H. 1996. Background, rationale and design of the West of Scotland 11 to 16 Study. Work. Pap. 52, MRC Med. Sociol. Unit
  70. Westveld AH, Hoff PD. 2011. A mixed effects model for longitudinal relational and network data, with applications to international trade and conflict. Ann. Appl. Stat. 5:843–72 [Google Scholar]
/content/journals/10.1146/annurev-statistics-060116-054035
Loading
/content/journals/10.1146/annurev-statistics-060116-054035
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error