1932

Abstract

This article discusses the stochastic actor-oriented model for analyzing panel data of networks. The model is defined as a continuous-time Markov chain, observed at two or more discrete time moments. It can be regarded as a generalized linear model with a large amount of missing data. Several estimation methods are discussed. After presenting the model for evolution of networks, attention is given to coevolution models. These use the same approach of a continuous-time Markov chain observed at a small number of time points, but now with an extended state space. The state space can be, for example, the combination of a network and nodal variables, or a combination of several networks. This leads to models for the dynamics of multivariate networks. The article emphasizes the approach to modeling and algorithmic issues for estimation; some attention is given to comparison with other models.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-statistics-060116-054035
2017-03-07
2024-12-12
Loading full text...

Full text loading...

/deliver/fulltext/statistics/4/1/annurev-statistics-060116-054035.html?itemId=/content/journals/10.1146/annurev-statistics-060116-054035&mimeType=html&fmt=ahah

Literature Cited

  1. Amati V, Schönenberger F, Snijders T. 2015. Estimation of stochastic actor-oriented models for the evolution of networks by generalized method of moments. J. Soc. Fr. Stat. 156:140–65 [Google Scholar]
  2. Bather J. 1989. Stochastic approximation: a generalisation of the Robbins-Monro procedure. Proc. 4th Prague Symp. Asympt. Stat. ed. P Mandl, M Hušková, 13–27 Prague: Charles Univ. [Google Scholar]
  3. Bolloba`s B. 1985. Random Graphs London: Academic Press [Google Scholar]
  4. Brandes U, Robins G, McCranie A, Wasserman S. 2013. What is network science?. Netw. Sci. 1:1–15 [Google Scholar]
  5. Burguete J, Gallant AR, Souza G. 1982. On unification of the asymptotic theory of nonlinear econometric models. Econom. Rev. 1:151–90 [Google Scholar]
  6. Durante D, Dunson DB. 2014. Nonparametric Bayes dynamic modelling of relational data. Biometrika 101:883–98 [Google Scholar]
  7. Erdős P, Rényi A. 1960. On the evolution of random graphs. Mat. Kut. Intézet Kőzleményei 5:17–61 [Google Scholar]
  8. Freeman LC. 2004. The Development of Social Network Analysis: A Study in the Sociology of Science Vancouver, BC: Empirical Press [Google Scholar]
  9. Goldenberg A, Zheng AX, Fienberg SE, Airoldi EM. 2009. A survey of statistical network models. Found. Trends Mach. Learn. 2:129–233 [Google Scholar]
  10. Graham BS. 2015. Methods of identification in social networks. Annu. Rev. Econ. 7:465–85 [Google Scholar]
  11. Greenan CC. 2015. Diffusion of innovations in dynamic networks. J. R. Stat. Soc. A 178:147–66 [Google Scholar]
  12. Hanneke S, Fu W, Xing EP. 2010. Discrete temporal models for social networks. Electron. J. Stat. 4:585–605 [Google Scholar]
  13. Hansen L. 1982. Large sample properties of generalized method of moments estimators. Econometrica 50:1029–54 [Google Scholar]
  14. Hoff PD, Raftery AE, Handcock MS. 2002. Latent space approaches to social network analysis. J. Am. Stat. Assoc. 97:1090–98 [Google Scholar]
  15. Holland PW, Leinhardt S. 1977. A dynamic model for social networks. J. Math. Sociol. 5:5–20 [Google Scholar]
  16. Holme P, Saramäki J. 2012. Temporal networks. Phys. Rep. 519:97–125 [Google Scholar]
  17. Huisman ME, Snijders TAB. 2003. Statistical analysis of longitudinal network data with changing composition. Sociol. Methods Res. 32:253–87 [Google Scholar]
  18. Huitsing G, Snijders TAB, Van Duijn MA, Veenstra R. 2014. Victims, bullies, and their defenders: a longitudinal study of the coevolution of positive and negative networks. Dev. Psychopathol. 26:645–59 [Google Scholar]
  19. Hunter DR. 2007. Curved exponential family models for social networks. Soc. Netw. 29:216–30 [Google Scholar]
  20. Hunter DR, Goodreau SM, Handcock MS. 2008. Goodness of fit of social network models. J. Am. Stat. Assoc. 103:248–58 [Google Scholar]
  21. Jackson MO. 2008. Social and Economic Networks Princeton, NJ: Princeton Univ. Press [Google Scholar]
  22. Kolaczyk ED. 2009. Statistical Analysis of Network Data: Methods and Models New York: Springer [Google Scholar]
  23. Koskinen JH, Snijders TAB. 2007. Bayesian inference for dynamic social network data. J. Stat. Plan. Inference 13:3930–38 [Google Scholar]
  24. Koskinen J, Snijders TAB. 2013. Longitudinal models. Exponential Random Graph Models ed. D Lusher, J Koskinen, G Robins 130–40 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  25. Koskinen JH, Caimo A, Lomi A. 2015. Simultaneous modelling of initial conditions and time heterogeneity in dynamic networks: an application to foreign direct investments. Netw. Sci. 3:58–77 [Google Scholar]
  26. Krivitsky PN, Handcock MS. 2014. A separable model for dynamic networks. J. R. Stat. Soc. B 76:29–46 [Google Scholar]
  27. Kushner HJ, Yin GG. 2003. Stochastic Approximation and Recursive Algorithms and Applications New York: Springer 2nd ed. [Google Scholar]
  28. Lerner J, Indlekofer N, Nick B, Brandes U. 2013. Conditional independence in dynamic networks. J. Math. Psychol. 57:275–83 [Google Scholar]
  29. Lospinoso JA. 2012. Statistical Models for Social Network Dynamics PhD Thesis, Univ: Oxford, Oxford, UK [Google Scholar]
  30. Louis T. 1982. Finding observed information when using the EM algorithm. J. R. Stat. Soc. B 44:226–33 [Google Scholar]
  31. Lusher D, Koskinen J, Robins G. 2013. Exponential Random Graph Models Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  32. Maddala G. 1983. Limited-Dependent and Qualitative Variables in Econometrics Cambridge, UK: Cambridge Univ. Press 3rd ed. [Google Scholar]
  33. Newman M. 2010. Networks: An Introduction Oxford, UK: Oxford Univ. Press [Google Scholar]
  34. Norris JR. 1997. Markov Chains Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  35. Orchard T, Woodbury M. 1972. A missing information principle: theory and applications. Proc. 6th Berkeley Symp. Math. Stat. Probab. 1697–715 Berkeley: Univ. Calif. Press [Google Scholar]
  36. Paul S, O'Malley AJ. 2013. Hierarchical longitudinal models of relationships in social networks. Appl. Stat. 62:705–22 [Google Scholar]
  37. Pearson MA, Michell L. 2000. Smoke rings: social network analysis of friendship groups, smoking and drug-taking. Drugs: Educ. Prev. Policy 7:121–37 [Google Scholar]
  38. Polyak BT. 1990. New method of stochastic approximation type. Autom. Remote Control 51:937–46 [Google Scholar]
  39. Rinaldo A, Fienberg SE, Zhou Y. 2009. On the geometry of discrete exponential families with application to exponential random graph models. Electron. J. Stat. 3:446–84 [Google Scholar]
  40. Ripley RM, Snijders TAB, Bóda Z, Vörös A, Preciado P. 2016. Manual for Siena version 4.0. Tech. Rep., Univ. Oxford, Dep. Stat., Nuffield College. https://www.stats.ox.ac.uk/∼snijders/siena/RSiena_Manual.pdf [Google Scholar]
  41. Robbins H, Monro S. 1951. A stochastic approximation method. Ann. Math. Stat. 22:400–7 [Google Scholar]
  42. Rubinstein R. 1986. The score function approach for sensitivity analysis of computer simulation models. Math. Comput. Simul. 28:351–79 [Google Scholar]
  43. Ruppert D. 1988. Efficient estimation from a slowly convergent Robbins-Monro process. Tech. Rep. 781, Sch. Oper. Res. Ind. Eng., Cornell Univ.
  44. Ruppert D. 1991. Stochastic approximation. Handbook of Sequential Analysis ed. BK Ghosh, PK Sen 503–29 New York: Marcel Dekker [Google Scholar]
  45. Schwabe R, Walk H. 1996. On a stochastic approximation procedure based on averaging. Metrika 44:165–80 [Google Scholar]
  46. Schweinberger M. 2011. Instability, sensitivity, and degeneracy of discrete exponential families. J. Am. Stat. Assoc. 106:1361–70 [Google Scholar]
  47. Schweinberger M, Snijders TAB. 2007. Markov models for digraph panel data: Monte Carlo–based derivative estimation. Comput. Stat. Data Anal. 51:94465–83 [Google Scholar]
  48. Snijders TAB. 2001. The statistical evaluation of social network dynamics. Sociol. Methodol. 31:361–95 [Google Scholar]
  49. Snijders TAB. 2011. Statistical models for social networks. Annu. Rev. Sociol. 37:131–53 [Google Scholar]
  50. Snijders TAB. 2016a. Siena algorithms. Tech. Rep., Univ: Groningen and Univ. Oxford https://www.stats.ox.ac.uk/∼snijders/siena/Siena_algorithms.pdf [Google Scholar]
  51. Snijders TAB. 2016b. The multiple flavours of multilevel issues for networks. Multilevel Network Analysis for the Social Sciences: Theory, Methods and Applications ed. E Lazega, TAB Snijders, 15–46 New York: Springer [Google Scholar]
  52. Snijders TAB, Doreian P. 2010. Introduction to the special issue on network dynamics. Soc. Netw. 32:1–3 [Google Scholar]
  53. Snijders TAB, Doreian P. 2012. Introduction to the special issue on network dynamics (part 2). Soc. Netw. 34:289–90 [Google Scholar]
  54. Snijders TAB, Koskinen JH, Schweinberger M. 2010a. Maximum likelihood estimation for social network dynamics. Ann. Appl. Stat. 4:567–88 [Google Scholar]
  55. Snijders TAB, Lomi A, Torlò V. 2013. A model for the multiplex dynamics of two-mode and one-mode networks, with an application to employment preference, friendship, and advice. Soc. Netw. 35:265–76 [Google Scholar]
  56. Snijders TAB, Pattison PE, Robins GL, Handcock MS. 2006. New specifications for exponential random graph models. Sociol. Methodol. 36:99–153 [Google Scholar]
  57. Snijders TAB, Pickup M. 2017 Stochastic actor-oriented models for network dynamics. Oxford Handbook of Political Networks ed. JN Victor, M Lubell, AH Montgomery Oxford: Oxford Univ. Press. In press [Google Scholar]
  58. Snijders TAB, Steglich CEG. 2017a Actor-Based Models for Analyzing Network Dynamics Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  59. Snijders TAB, Steglich CEG. 2017b Social Network Dynamics by Examples Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  60. Snijders TAB, Steglich CEG, Schweinberger M. 2007. Modeling the co-evolution of networks and behavior. Longitudinal Models in the Behavioral and Related Sciences ed. K van Montfort, H Oud, A Satorra 41–71 Mahwah, NJ: Lawrence Erlbaum [Google Scholar]
  61. Snijders TAB, van de Bunt GG, Steglich C. 2010b. Introduction to actor-based models for network dynamics. Soc. Netw. 32:44–60 [Google Scholar]
  62. Steglich CEG, Snijders TAB, Pearson MA. 2010. Dynamic networks and behavior: separating selection from influence. Sociol. Methodol. 40:329–93 [Google Scholar]
  63. Tanner M, Wong W. 1987. The calculation of posterior distributions by data augmentation (with discussion). J. Am. Stat. Assoc. 82:528–50 [Google Scholar]
  64. Tubaro P, Mounier L, Lazega E, Snijders T. 2017 Dynamics of advice-seeking networks among judges at the commercial court of Paris. Social Network Dynamics by Examples ed. T Snijders, C Steglich Cambridge, UK: Cambridge Univ. Press. In press [Google Scholar]
  65. van Duijn MA, Snijders TAB, Zijlstra BH. 2004. p2: A random effects model with covariates for directed graphs. Stat. Neerl. 58:234–54 [Google Scholar]
  66. Veenstra R, Dijkstra JK, Steglich C, Van Zalk MH. 2013. Network–behavior dynamics. J. Res. Adolesc. 23:3399–412 [Google Scholar]
  67. Wasserman S, Pattison P. 1996. Logit models and logistic regression for social networks: I. An introduction to Markov graphs and p*. Psychometrika 61:401–25 [Google Scholar]
  68. Watts DJ, Strogatz SH. 1998. Collective dynamics of `small-world’ networks. Nature 393:6684440–42 [Google Scholar]
  69. West P, Sweeting H. 1996. Background, rationale and design of the West of Scotland 11 to 16 Study. Work. Pap. 52, MRC Med. Sociol. Unit [Google Scholar]
  70. Westveld AH, Hoff PD. 2011. A mixed effects model for longitudinal relational and network data, with applications to international trade and conflict. Ann. Appl. Stat. 5:843–72 [Google Scholar]
/content/journals/10.1146/annurev-statistics-060116-054035
Loading
/content/journals/10.1146/annurev-statistics-060116-054035
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error