1932

Abstract

This article reviews developments in statistics for spatial point processes obtained within roughly the past decade. These developments include new classes of spatial point process models such as determinantal point processes, models incorporating both regularity and aggregation, and models where points are randomly distributed around latent geometric structures. Regarding parametric inference, the main focus is on various types of estimating functions derived from so-called innovation measures. Optimality of such estimating functions is discussed, as well as computational issues. Maximum likelihood inference for determinantal point processes and Bayesian inference are also briefly considered. Concerning nonparametric inference, we consider extensions of functional summary statistics to the case of inhomogeneous point processes as well as new approaches to simulation-based inference.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-statistics-060116-054055
2017-03-07
2024-05-05
Loading full text...

Full text loading...

/deliver/fulltext/statistics/4/1/annurev-statistics-060116-054055.html?itemId=/content/journals/10.1146/annurev-statistics-060116-054055&mimeType=html&fmt=ahah

Literature Cited

  1. Almeida MP, Gidas B. 1993. A variational method for estimating the parameters of MRF from complete or incomplete data. Ann. Appl. Probab. 3:103–36 [Google Scholar]
  2. Andersen IT, Hahn U. 2016. Matérn thinned Cox processes. Spat. Stat. 15:1–21 [Google Scholar]
  3. Ang QW, Baddeley A, Nair G. 2012. Geometrically corrected second order analysis of events on a linear network, with applications to ecology and criminology. Scand. J. Stat. 39:591–617 [Google Scholar]
  4. Baddeley A, Couerjolly JF, Rubak E, Waagepetersen R. 2014a. Logistic regression for spatial Gibbs point processes. Biometrika 101:377–92 [Google Scholar]
  5. Baddeley A, Dereudre D. 2013. Variational estimators for the parameters of Gibbs point process models. Bernoulli 19:905–30 [Google Scholar]
  6. Baddeley A, Jammalamadaka A, Nair G. 2014b. Multitype point process analysis of spines on the dendrite network of a neuron. J. R. Stat. Soc. C 63:673–94 [Google Scholar]
  7. Baddeley A, Møller J, Waagepetersen R. 2000. Non- and semi-parametric estimation of interaction in inhomogeneous point patterns. Stat. Neerl. 54:329–50 [Google Scholar]
  8. Baddeley A, Nair G. 2012a. Approximating the moments of a spatial point process. Stat 1:18–30 [Google Scholar]
  9. Baddeley A, Nair G. 2012b. Fast approximation of the intensity of Gibbs point processes. Electron. J. Stat. 6:1155–69 [Google Scholar]
  10. Baddeley A, Rubak E, Turner R. 2015. Spatial Point Patterns: Methodology and Applications with R Boca Raton, FL: Chapman & Hall/CRC
  11. Baddeley A, Turner R. 2000. Practical maximum pseudolikelihood for spatial point patterns. Aust. N. Z. J. Stat. 42:283–322 [Google Scholar]
  12. Baddeley A, Turner R. 2005. spatstat: an R package for analyzing spatial point patterns. J. Stat. Softw. 12:1–42 [Google Scholar]
  13. Baddeley A, Turner R. 2006. Modelling spatial point patterns in R. Case Studies in Spatial Point Pattern Modelling ed. A Baddeley, P Gregori, J Mateu, R Stoica, D Stoyan 23–74 New York: Springer-Verlag [Google Scholar]
  14. Baddeley A, Turner R, Møller J, Hazelton M. 2005. Residual analysis for spatial point processes (with discussion). J. R. Stat. Soc. B 67:617–66 [Google Scholar]
  15. Berman M. 1986. Testing for spatial association between a point process and another stochastic process. Appl. Stat. 35:54–62 [Google Scholar]
  16. Berman M, Turner R. 1992. Approximating point process likelihoods with GLIM. Appl. Stat 41:31–38 [Google Scholar]
  17. Berthelsen K, Møller J. 2006. Non-parametric Bayesian inference for inhomogeneous Markov point processes. Aust. N. Z. J. Stat. 50:257–72 [Google Scholar]
  18. Besag J. 1977. Some methods of statistical analysis for spatial data. Bull. Int. Stat. Inst. 47:77–92 [Google Scholar]
  19. Billiot JM. 1997. Asymptotic properties of Takacs-Fiksel estimation method for Gibbs point processes. Statistics 30:68–89 [Google Scholar]
  20. Billiot JM, Coeurjolly JF, Drouilhet R. 2008. Maximum pseudolikelihood estimator for exponential family models of marked Gibbs point processes. Electron. J. Stat. 2:234–64 [Google Scholar]
  21. Blackwell P. 2001. Bayesian inference for a random tessellation process. Biometrics 57:502–7 [Google Scholar]
  22. Blackwell P, Møller J. 2003. Bayesian analysis of deformed tessellation models. Adv. Appl. Probab 35:4–26 [Google Scholar]
  23. Chang X, Waagepetersen R, Yu H, Ma X, Holford T. et al. 2015. Disease risk estimation by combining case-control data with aggregated information on the population at risk. Biometrics 71:114–21 [Google Scholar]
  24. Chiu SN, Stoyan D, Kendall WS, Mecke J. 2013. Stochastic Geometry and Its Applications Chichester, UK: Wiley 3rd ed.
  25. Coeurjolly JF, Dereudre D, Drouilhet R, Lavancier F. 2012. Takacs-Fiksel method for stationary marked Gibbs point processes. Scand. J. Stat. 49:416–43 [Google Scholar]
  26. Coeurjolly JF, Guan Y, Khanmohammadi M, Waagepetersen R. 2017. Towards optimal Takacs-Fiksel estimation. Spat. Stat. 18:396–411 [Google Scholar]
  27. Coeurjolly JF, Møller J. 2014. Variational approach for spatial point process intensity estimation. Bernoulli 20:1097–125 [Google Scholar]
  28. Coeurjolly JF, Møller J, Waagepetersen R. 2016. A tutorial on Palm distributions for spatial point processes. Int. Stat. Rev. In press
  29. Condit R. 1998. Tropical Forest Census Plots. Berlin: Springer-Verlag
  30. Condit R, Hubbell SP, Foster RB. 1996. Changes in tree species abundance in a neotropical forest: impact of climate change. J. Trop. Ecol. 12:231–56 [Google Scholar]
  31. Dao NA, Genton MG. 2014. A Monte Carlo adjusted goodness-of-fit test for parametric models describing spatial point patterns. J. Comput. Gr. Stat. 23:497–517 [Google Scholar]
  32. Deng C, Guan Y, Waagepetersen R, Zhang J. 2016. Second-order quasi-likelihood for spatial point processes. Biometrics In press
  33. Deng C, Waagepetersen R, Guan Y. 2015. A combined estimating function approach for fitting stationary point process models. Biometrika 101:393–408 [Google Scholar]
  34. Diggle P, Fiksel T, Grabarnik P, Ogata Y, Stoyan D, Tanemura M. 1994. On parameter estimation for pairwise interaction point processes. Int. Stat. Rev. 62:99–117 [Google Scholar]
  35. Diggle P, Guan Y, Hart A, Paize F, Stanton M. 2010. Estimating individual-level risk in spatial epidemiology using spatially aggregated information on the population at risk. J. Am. Stat. Assoc. 105:1394–402 [Google Scholar]
  36. Diggle PJ. 2003. Statistical Analysis of Spatial Point Patterns London: Arnold 2nd ed.
  37. Diggle PJ, Rowlingson B. 1994. A conditional approach to point process modelling of elevated risk. J. R. Stat. Soc. A 157:433–40 [Google Scholar]
  38. Dvořák J, Prokešová M. 2012. Moment estimation methods for stationary spatial Cox processes—a comparison. Kybernetika 48:1007–26 [Google Scholar]
  39. Fiksel T. 1984. Estimation of parameterized pair potentials of marked and nonmarked Gibbsian point processes. Elektron. Inf. Kybern. 20:270–78 [Google Scholar]
  40. Gelfand A, Diggle P, Guttorp P, Fuentes M. 2010. Handbook of Spatial Statistics. Boca Raton, FL: Chapman & Hall/CRC
  41. Georgii HO. 1976. Canonical and grand canonical Gibbs states for continuum systems. Commun. Math. Phys. 48:31–51 [Google Scholar]
  42. Geyer CJ, Møller J. 1994. Simulation procedures and likelihood inference for spatial point processes. Scand. J. Stat. 21:359–73 [Google Scholar]
  43. Goldstein J, Haran M, Simeonov I, Fricks J, Chiaromonte F. 2015. An attraction-repulsion point process model for respiratory syncytial virus infections. Biometrics 71:376–85 [Google Scholar]
  44. Green P. 1995. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82:711–32 [Google Scholar]
  45. Guan Y. 2006. A composite likelihood approach in fitting spatial point process models. J. Am. Stat. Assoc. 101:1502–12 [Google Scholar]
  46. Guan Y, Loh JM. 2007. A thinned block bootstrap procedure for modeling inhomogeneous spatial point patterns. J. Am. Stat. Assoc. 102:1377–86 [Google Scholar]
  47. Guan Y, Waagepetersen R, Beale CM. 2008. Second-order analysis of inhomogeneous spatial point processes with proportional intensity functions. J. Am. Stat. Assoc. 103:769–77 [Google Scholar]
  48. Guan Y, Waagepetersen R, Jalilian A. 2015. Quasi-likelihood for spatial point processes. J. R. Stat. Soc. B 77:677–97 [Google Scholar]
  49. Guttorp P, Thorarinsdottir T. 2012. Bayesian inference for non-Markovian point processes. Advances and Challenges in Space-time Modelling of Natural Events ed. E Porcu, J Montero, M Schlather 79–102 Berlin: Springer [Google Scholar]
  50. Hahn U, Jensen EBV, van Lieshout MNM, Nielsen LS. 2003. Inhomogeneous spatial point processes by location-dependent scaling. Adv. Appl. Probab. 35:319–36 [Google Scholar]
  51. Heyde CC. 1997. Quasi-Likelihood and Its Application: A General Approach to Optimal Parameter Estimation. New York: Springer-Verlag [Google Scholar]
  52. Hodder I, Orton C. 2013. Spatial Analysis in Archaeology Cambridge, UK: Cambridge Univ. Press
  53. Hough JB, Krishnapur M, Peres Y, Viràg B. 2006. Determinantal processes and independence. Probab. Surv. 3:206–29 [Google Scholar]
  54. Huang H, Ma X, Waagepetersen R, Holford T, Wang R. et al. 2014. A new estimation approach for combining epidemiological data from multiple sources. J. Am. Stat. Assoc. 109:11–23 [Google Scholar]
  55. Hubbell SP, Foster RB. 1983. Diversity of canopy trees in a neotropical forest and implications for conservation. Tropical Rain Forest: Ecology and Management ed. SL Sutton, TC Whitmore, AC Chadwick 25–41 Oxford: Blackwell Scientific Publications [Google Scholar]
  56. Huber M. 2011. Spatial point processes. Handbook of MCMC ed. S Brooks, A Gelman, G Jones, X Meng 227–52 Boca Raton, FL: Chapman & Hall/CRC [Google Scholar]
  57. Huber M. 2015. Perfect Simulation Boca Raton, FL: Chapman & Hall/CRC
  58. Huber M, Wolpert R. 2009. Likelihood-based inference for Matérn type-III repulsive point processes. Adv. Appl. Probab. 41:958–77 [Google Scholar]
  59. Icke V, Van de Weygaert R. 1987. Fragmenting the Universe. Astron. Astrophys. 184:16–32 [Google Scholar]
  60. Illian J, Penttinen A, Stoyan H, Stoyan D. 2008. Statistical Analysis and Modelling of Spatial Point Patterns New York: Wiley
  61. Illian JB, Sørbye SH, Rue H. 2012. A toolbox for fitting complex spatial point process models using integrated nested Laplace approximation (INLA). Ann. Appl. Stat. 6:1499–530 [Google Scholar]
  62. Jalilian A, Guan Y, Mateu J, Waagepetersen R. 2015. Multivariate product-shot-noise Cox point process models. Biometrics 71:1022–33 [Google Scholar]
  63. Jalilian A, Guan Y, Waagepetersen R. 2013. Decomposition of variance for spatial Cox processes. Scand. J. Stat. 40:119–37 [Google Scholar]
  64. Jensen EBV, Nielsen LS. 2000. Inhomogeneous Markov point processes by transformation. Bernoulli 6:761–82 [Google Scholar]
  65. Jensen JL, Møller J. 1991. Pseudolikelihood for exponential family models of spatial point processes. Ann. Appl. Probab. 3:445–61 [Google Scholar]
  66. Karlsson L, Liljeborg A. 1994. Second-order stereology for pores in translucent alumina studied by confocal scanning laser microscopy. J. Microsc. 175:186–94 [Google Scholar]
  67. Kendall WS, van Lieshout MNM, Baddeley AJ. 1999. Quermass-interaction processes: conditions for stability. Adv. Appl. Probab. 31:315–42 [Google Scholar]
  68. Khanmohammadi M, Waagepetersen R, Nava N, Nyengaard JR, Sporring J. 2014. Analysing the distribution of synaptic vesicles using a spatial point process model. Proc. 5th ACM Conf. Bioinform. Comput. Bio. Health Inform.73–78 New York: ACM [Google Scholar]
  69. Khanmohammadi M, Waagepetersen R, Sporring J. 2015. Analysis of shape and spatial interaction of synaptic vesicles using data from focused ion beam scanning electron microscopy (FIB-SEM). Front. Neuroanat. 9:116 [Google Scholar]
  70. Lavancier F, Møller J. 2016. Modelling aggregation on the large scale and regularity on the small scale in spatial point pattern datasets. Scand. J. Stat. 43:587–609 [Google Scholar]
  71. Lavancier F, Møller J, Rubak E. 2014. Determinantal point process models and statistical inference: extended version. arXiv:1205.4818 [math.ST]
  72. Lavancier F, Møller J, Rubak E. 2015. Determinantal point process models and statistical inference. J. R. Stat. Soc. B 77:853–77 [Google Scholar]
  73. Lavancier F, Rochet P. 2016. A general method to combine estimators. Comput. Stat. Data Anal. 94:175–92 [Google Scholar]
  74. Lawrence T, Baddeley A, Milne RK, Nair G. 2016. Point pattern analysis on a region of a sphere. Stat 5:144–57 [Google Scholar]
  75. Lindgren F, Rue H, Lindström J. 2011. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. J. R. Stat. Soc. B 73:423–98 [Google Scholar]
  76. Loosmore N, Ford E. 2006. Statistical inference using the G or K point pattern spatial statistics. Ecology 87:1925–31 [Google Scholar]
  77. Macchi O. 1975. The coincidence approach to stochastic point processes. Adv. Appl. Probab. 7:83–122 [Google Scholar]
  78. Matérn B. 1986. Spatial Variation Berlin: Springer-Verlag
  79. McCullagh P, Møller J. 2006. The permanental process. Adv. Appl. Probab. 38:873–88 [Google Scholar]
  80. McKeague IW, Loizeaux M. 2002. Perfect sampling for point process cluster modelling. Spatial Cluster Modelling ed. AB Lawson, D Denison 87–107 Boca Raton, FL: Chapman & Hall/CRC Press [Google Scholar]
  81. Møller J. 1999. Markov chain Monte Carlo and spatial point processes. Stochastic Geometry: Likelihood and Computation ed. OE Barndorff-Nielsen, WS Kendall, MNM van Lieshout 141–72 Boca Raton, FL: Chapman and Hall/CRC [Google Scholar]
  82. Møller J. 2003. Shot noise Cox processes. Adv. Appl. Probab. 35:614–40 [Google Scholar]
  83. Møller J, Huber M, Wolpert R. 2010. Perfect simulation and moment properties for the Matérn type III process. Stochastic Process. Their Appl. 120:2142–58 [Google Scholar]
  84. Møller J, Nielsen M, Porcu E, Rubak E. 2017. Determinantal point process models on the sphere. Bernoulli In press
  85. Møller J, Pettitt A, Berthelsen K, Reeves R. 2006. An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants. Biometrika 93:451–58 [Google Scholar]
  86. Møller J, Rasmussen JG. 2012. A sequential point process model and Bayesian inference for spatial point patterns with linear structures. Scand. J. Stat. 39:618–34 [Google Scholar]
  87. Møller J, Rasmussen JG. 2015. Spatial cluster point processes related to Poisson-Voronoi tessellations. Stochastic Environ. Res. Risk Assess. 29:431–41 [Google Scholar]
  88. Møller J, Rubak E. 2016. Functional summary statistics for point processes on the sphere with an application to determinantal point processes. Spat. Stat. 18:4–23 [Google Scholar]
  89. Møller J, Safavimanesh F, Rasmussen J. 2016. The cylindrical K-function and Poisson line cluster point processes. Biometrika 103937–54
  90. Møller J, Syversveen AR, Waagepetersen RP. 1998. Log Gaussian Cox processes. Scand. J. Stat. 25:451–82 [Google Scholar]
  91. Møller J, Toftager H. 2014. Geometric anisotropic spatial point pattern analysis and Cox processes. Scand. J. Stat. 41:414–35 [Google Scholar]
  92. Møller J, Torrisi G. 2005. Generalised shot noise Cox processes. Adv. Appl. Probab. 37:48–74 [Google Scholar]
  93. Møller J, Waagepetersen RP. 2004. Statistical Inference and Simulation for Spatial Point Processes. Boca Raton, FL: Chapman and Hall/CRC [Google Scholar]
  94. Møller J, Waagepetersen RP. 2007. Modern statistics for spatial point processes. Scand. J. Stat. 34:643–84 [Google Scholar]
  95. Mountcastle VB. 1957. Modality and topographic properties of single neurons of cat's somatic sensory cortex. J. Neurophysiol. 20:408–34 [Google Scholar]
  96. Murray I, Ghahramani Z, MacKay DJC. 2006. MCMC for doubly-intractable distributions. Proc. 22nd Annu. Conf. Uncertain. Artif. Intell.359–66 Klosterneuburg, Austria: AUAI Press
  97. Myllymäki M, Mrkvicka T, Grabarnik P, Seijo H, Hahn U. 2016. Global envelope tests for spatial processes. J. R. Stat. Soc. B. doi: 10.1111/rssb.12172
  98. Nguyen X, Zessin H. 1979. Integral and differential characterizations of Gibbs processes. Math. Nachr. 88:105–15 [Google Scholar]
  99. Okabe A, Sugihara K. 2012. Spatial Analysis Along Networks Chichester: UK: Wiley
  100. Prokešová M, Dvorák J, Jensen E. 2016. Two-step estimation procedures for inhomogeneous shot-noise Cox processes. Ann. Inst. Stat. Math. doi: 10.1007/s10463-016-0556-y
  101. Prokešová M, Jensen EBV. 2013. Asymptotic Palm likelihood theory for stationary point processes. Ann. Inst. Stat. Math. 65:387–412 [Google Scholar]
  102. Rafati AH, Safavimanesh F, Dorph-Petersen KA, Rasmussen JG, Møller J, Nyengaard J. 2016. Detection and spatial characterization of minicolumnarity in the human cerebral cortex. J. Microsc. 261:115–26 [Google Scholar]
  103. Ripley B. 1977. Modelling spatial patterns (with discussion). J. R. Stat. Soc. B 39:172–212 [Google Scholar]
  104. Robeson SM, Li A, Huang C. 2014. Point-pattern analysis on the sphere. Spat. Stat. 10:76–86 [Google Scholar]
  105. Rue H, Martino S, Chopin N. 2009. Approximate Bayesian inference for latent Gaussian models using integrated nested Laplace approximations (with discussion). J. R. Stat. Soc. B 71:319–92 [Google Scholar]
  106. Rue H, Riebler A, Sørbye SH, Illian JB, Simpson DP, Lindgren F. 2017 Bayesian computing with INLA: a review. Annu. Rev. Stat. Appl. 4:395–422 [Google Scholar]
  107. Ruelle D. 1969. Statistical Mechanics: Rigorous Results Reading, MA: W.A. Benjamin
  108. Schoenberg FP. 2005. Consistent parametric estimation of the intensity of a spatial-temporal point process. J. Stat. Plann. Inference 128:79–93 [Google Scholar]
  109. Skare Ø, Møller J, Jensen E. 2007. Bayesian analysis of spatial point processes in the neighbourhood of Voronoi networks. Stat. Comput. 17:369–79 [Google Scholar]
  110. Stoyan D. 1979. Interrupted point processes. Biom. J. 21:607–10 [Google Scholar]
  111. Takacs R. 1986. Estimator for the pair-potential of a Gibbsian point process. Statistics 17:429–33 [Google Scholar]
  112. Tanaka U, Ogata Y, Stoyan D. 2008. Parameter estimation and model selection for Neyman-Scott point processes. Biometrical J. 50:43–57 [Google Scholar]
  113. Taylor BM, Diggle PJ. 2012. INLA or MCMC? A tutorial and comparative evaluation for spatial prediction in log-Gaussian Cox processes. J. Stat. Comput. Simul. 84:2266–84 [Google Scholar]
  114. Valencia R, Foster R, Villa G, Condit R, Svenning JC. et al. 2004. Tree species distributions and local habitat variation in the Amazon, Ecuador: large forest plot in Eastern Ecuador. J. Ecol. 92:214–29 [Google Scholar]
  115. Van de Weygaert R. 1994. Fragmenting the Universe III. The construction and statistics of 3-D Voronoi tessellations. Astron. Astrophys. 283:361–406 [Google Scholar]
  116. Van de Weygaert R, Icke V. 1989. Fragmenting the Universe II. Voronoi vertices as Abell clusters. Astron. Astrophys. 213:1–9 [Google Scholar]
  117. Van Lieshout MNM. 2006a. Campbell and moment measures for finite sequential spatial processes. Proc. Prague Stoch. 2006 ed. M Husková, M Janzura 215–24 Prague: Matfyzpress [Google Scholar]
  118. Van Lieshout MNM. 2006b. Markovianity in space and time. Dynamics & Stochastics: Festschrift in Honour of M.S. Keane ed. D Denteneer, F Den Hollander, E Verbitskiy 154–68 Beachwood, OH: Inst. Math. Stat. [Google Scholar]
  119. Van Lieshout MNM. 2011. A J-function for inhomogeneous point processes. Stat. Neerl. 65:183–201 [Google Scholar]
  120. Van Lieshout MNM, Baddeley AJ. 2002. Extrapolating and interpolating spatial patterns. Spatial Cluster Modelling ed. AB Lawson, D Denison 61–86 Boca Raton, FL: Chapman & Hall/CRC Press [Google Scholar]
  121. Waagepetersen R. 2005. Discussion of “Residual analysis for spatial point processes”. J. R. Stat. Soc. B 67:662 [Google Scholar]
  122. Waagepetersen R. 2007. An estimating function approach to inference for inhomogeneous Neyman-Scott processes. Biometrics 63:252–58 [Google Scholar]
  123. Waagepetersen R. 2008. Estimating functions for inhomogeneous spatial point processes with incomplete covariate data. Biometrika 95:351–63 [Google Scholar]
  124. Waagepetersen R, Guan Y. 2009. Two-step estimation for inhomogeneous spatial point processes. J. R. Stat. Soc. B 71:685–702 [Google Scholar]
  125. Waagepetersen R, Guan Y, Jalilian A, Mateu J. 2016. Analysis of multispecies point patterns by using multivariate log-Gaussian Cox processes. J. R. Stat. Soc. C 65:77–96 [Google Scholar]
  126. Walsch DCI, Raftery AE. 2002. Detecting mines in minefields with linear characteristics. Technometrics 44:34–44 [Google Scholar]
  127. Zhuang J. 2006. Second-order residual analysis of spatiotemporal point processes and applications in model evaluation. J. R. Stat. Soc. B 68:635–53 [Google Scholar]
  128. Zhuang J. 2015. Weighted likelihood estimators for point processes. Spat. Stat. 14:166–78 [Google Scholar]
/content/journals/10.1146/annurev-statistics-060116-054055
Loading
/content/journals/10.1146/annurev-statistics-060116-054055
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error