1932

Abstract

I introduce a -value function that derives from the continuity inherent in a wide range of regular statistical models. This provides confidence bounds and confidence sets, tests, and estimates that all reflect model continuity. The development starts with the scalar-variable scalar-parameter exponential model and extends to the vector-parameter model with scalar interest parameter, then to general regular models, and then references for testing vector interest parameters are available. The procedure does not use sufficiency but applies directly to general models, although it reproduces sufficiency-based results when sufficiency is present. The emphasis is on the coherence of the full procedure, and technical details are not emphasized.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-statistics-060116-054139
2017-03-07
2024-04-17
Loading full text...

Full text loading...

/deliver/fulltext/statistics/4/1/annurev-statistics-060116-054139.html?itemId=/content/journals/10.1146/annurev-statistics-060116-054139&mimeType=html&fmt=ahah

Literature Cited

  1. Barndorff-Nielsen OE. 1991. Modified signed log likelihood ratio. Biometrika 78:557–63 [Google Scholar]
  2. Barndorff-Nielsen OE, Cox DR. 1979. Edgeworth and saddlepoint approximations with statistical applications. J. R. Stat. Soc. B 41:187–220 [Google Scholar]
  3. Bayes T. 1763. An essay towards solving a problem in the doctrine of chances. Philos. Trans. R. Soc. 53:370–418 [Google Scholar]
  4. Cakmak S, Fraser DAS, McDunnough P, Reid N, Yuan X. 1998. Likelihood centered asymptotic model: exponential and location model versions. J. Stat. Plann. Inference 66:211–22 [Google Scholar]
  5. Cakmak S, Fraser DAS, Reid N. 1994. Multivariate asymptotic model: exponential and location model approximations. Utilitas Math. 46:21–31 [Google Scholar]
  6. Daniels HE. 1954. Saddlepoint approximations in statistics. Ann. Math. Stat. 46:21–31 [Google Scholar]
  7. Davison AC, Fraser DAS, Reid N, Sartori N. 2013. Accurate directional inference for vector parameters in linear exponential families. J. Am. Stat. Assoc. 109:302–14 [Google Scholar]
  8. Fisher R. 1925. Statistical Methods for Research Workers Edinburgh: Oliver and Boyd
  9. Fisher R. 1930. Inverse probability. Proc. Camb. Philos. Soc. 26:528–35 [Google Scholar]
  10. Fisher R. 1937. The Design of Experiments Edinburgh: Oliver and Boyd, 2nd ed..
  11. Fisher RA. 1956. Statistical Methods and Scientific Inference Edinburgh: Oliver and Boyd
  12. Fraser AM, Fraser DAS, Staicu AM. 2010. Second order ancillary: a differential view with continuity. Bernoulli 16:1208–23 [Google Scholar]
  13. Fraser DAS. 2011. Is Bayes posterior just quick and dirty confidence? (With discussion). Stat. Sci. 26:299–316 [Google Scholar]
  14. Fraser DAS, Reid N. 1995. Ancillaries and third order significance. Utilitas Math. 47:33–53 [Google Scholar]
  15. Fraser DAS, Reid N. 2001. Ancillary information for statistical inference. Empirical Bayes and Likelihood Inference E Ahmed, N Reid 185–210 Berlin: Springer [Google Scholar]
  16. Fraser DAS, Reid N, Sartori N. 2016. Accurate directional inference for vector parameters, with curvature. In press
  17. Fraser DAS, Wong A, Sun Y. 2009. Three enigmatic examples and inference from likelihood. Can. J. Stat. 37:161–81 [Google Scholar]
  18. Ioannidis JPA. 2005. Why most published research findings are false. PLOS Med. 2:8e124 doi:10.1371/journal.pmed.0020124 [Google Scholar]
  19. Laplace P-S. 1774. Mémoire sur la probabilité des causes par les événements. Acad. R. Sci. 6:621–56 [Google Scholar]
  20. Lugannani R, Rice SO. 1980. Saddlepoint approximations for the distribution of the sum of independent variables. Adv. Appl. Probability 12:475–590 [Google Scholar]
  21. Mosteller F, Wallace D. 1964. Inference and Disputed Authorship: The Federalist Reading, UK: Addison-Wesley
  22. Neyman J. 1937. Outline of a theory of statistical estimation based on the classical theory of probability. Philos. Trans. R. Soc. A 237:333–80 [Google Scholar]
  23. Neyman J, Pearson E. 1933. On the problem of the most efficient tests of a statistical hypothesis. Philos. Trans. R. Soc. A 231:289–337 [Google Scholar]
  24. Rozeboom W. 1960. The fallacy of the null-hypothesis significance test. Psychol. Bull. 57:416–28 [Google Scholar]
  25. Sterling TD. 1959. Publication decisions and their possible effects on inferences drawn from tests of significance—or vice versa. J. Am. Stat. Assoc. 54:30–34 [Google Scholar]
  26. Tierney L, Kadane JB. 1986. Accurate approximations for posterior moments and marginal densities. J. Am. Stat. Assoc. 81:82–86 [Google Scholar]
  27. Tierney L, Kass R, Kadane J. 1989. Fully exponential Laplace approximations to expectations and variances of nonpositive functions. J. Am. Stat. Assoc. 84:710–16 [Google Scholar]
  28. Wald A. 1949. Note on the consistency of the maximum likelihood estimate. Ann. Math. Stat. 20:20595–601 [Google Scholar]
  29. Wasserstein R, Lazar N. 2016. The ASA's statement on p-values: context, process, and purpose. Am. Stat. 70:129–33 [Google Scholar]
  30. Woolston C. 2015. Psychology journal bans p-values. Nature News Feb. 26. http://www.nature.com/news/psychology-journal-bans-p-values-1.17001
/content/journals/10.1146/annurev-statistics-060116-054139
Loading
/content/journals/10.1146/annurev-statistics-060116-054139
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error