1932

Abstract

The most prevalent spatial data setting is, arguably, that of so-called geostatistical data, data that arise as random variables observed at fixed spatial locations. Collection of such data in space and in time has grown enormously in the past two decades. With it has grown a substantial array of methods to analyze such data. Here, we attempt a review of a fully model-based perspective for such data analysis, the approach of hierarchical modeling fitted within a Bayesian framework. The benefit, as with hierarchical Bayesian modeling in general, is full and exact inference, with proper assessment of uncertainty. Geostatistical modeling includes univariate and multivariate data collection at sites, continuous and categorical data at sites, static and dynamic data at sites, and datasets over very large numbers of sites and long periods of time. Within the hierarchical modeling framework, we offer a review of the current state of the art in these settings.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-statistics-060116-054155
2017-03-07
2024-05-04
Loading full text...

Full text loading...

/deliver/fulltext/statistics/4/1/annurev-statistics-060116-054155.html?itemId=/content/journals/10.1146/annurev-statistics-060116-054155&mimeType=html&fmt=ahah

Literature Cited

  1. Bakar KS, Sahu SK. 2014. spTimer: spatio-temporal Bayesian modeling using R. J. Stat. Softw. 63:1–32 [Google Scholar]
  2. Banerjee S, Carlin BP, Gelfand AE. 2014. Hierarchical Modeling and Analysis for Spatial Data Boca Raton, FL: Chapman and Hall/CRC Press, 2nd ed..
  3. Banerjee S, Gelfand AE, Finley AO, Sang H. 2008. Gaussian predictive process models for large spatial datasets. J. R. Stat. Soc. B 70:825–48 [Google Scholar]
  4. Barry RP, Ver Hoef JM. 1996. Blackbox kriging: spatial prediction without specifying variogram models. J. Agric. Biol. Environ. Stat. 1:297–322 [Google Scholar]
  5. Berger JO, DeOliveira V, Sansó B. 2001. Objective Bayesian analysis of spatially correlated data. J. Am. Stat. Assoc. 96:1361–74 [Google Scholar]
  6. Berliner LM. 2000. Hierarchical Bayesian modeling in the environmental sciences. AStA Adv. Stat. Anal. 84:141–53 [Google Scholar]
  7. Berrocal VJ, Gelfand AE, Holland DM. 2010. A spatio-temporal downscaler for outputs from numerical models. J. Agric. Biol. Environ. Stat. 15:176–97 [Google Scholar]
  8. Chiles JP, Delfiner P. 1999. Geostatistics: Modeling Spatial Uncertainty New York: Wiley
  9. Christensen OF, Ribeiro PJ Jr. 2002. geoRglm: A package for generalised linear spatial models. R News 2:26–28 [Google Scholar]
  10. Clark JS, Gelfand AE. 2006. A future for models and data in ecology. Trends Ecol. Evol. 21:375–80 [Google Scholar]
  11. Cressie N, Huang H-C. 1999. Classes of nonseparable spatio-temporal stationary covariance functions. J. Am. Stat. Assoc. 94:1330–40 [Google Scholar]
  12. Cressie N, Wikle CK. 2011. Statistics for Spatiotemporal Data New York: Wiley
  13. Csató L. 2002. Gaussian processes—iterative sparse approximations. PhD thesis, Aston Univ Birmingham, UK:
  14. Datta A, Banerjee S, Finley AO, Gelfand AE. 2016a. Hierarchical nearest-neighbor Gaussian process models for large geostatistical datasets. J. Am. Stat. Assoc. 111:800–12 [Google Scholar]
  15. Datta A, Banerjee S, Finley AO, Gelfand AE. 2016c. On nearest-neighbor Gaussian process models for massive spatial data. WIREs Comput. Stat. (8):162–71 [Google Scholar]
  16. Datta A, Banerjee S, Finley AO, Hamm NAS, Schaap M. 2016b. Nonseparable dynamic nearest neighbor Gaussian process models for large spatio-temporal data with an application to particulate matter analysis. Ann. Appl. Stat. 10:1286–316 [Google Scholar]
  17. DeOliveira V. 2000. Bayesian prediction of clipped Gaussian random fields. Comput. Stat. Data Anal. 34:299–314 [Google Scholar]
  18. Diggle PJ, Tawn JA, Moyeed RA. 1998. Model-based geostatistics (with discussion). J. R. Stat. Soc. C 47:299–350 [Google Scholar]
  19. Finley AO, Banerjee S, Carlin BP. 2007. spBayes: an R package for univariate and multivariate hierarchical point-referenced spatial models. J. Stat. Softw. 19:4 [Google Scholar]
  20. Finley AO, Banerjee S, Gelfand AE. 2015. spBayes for large univariate and multivariate point-referenced spatiotemporal data models. J. Stat. Softw. 63:1–28 [Google Scholar]
  21. Finley AO, Sang H, Banerjee S, Gelfand AE. 2009. Improving the performance of predictive process modeling for large datasets. Comput. Stat. Data Anal. 53:2873–84 [Google Scholar]
  22. Fuentes M, Raftery AE. 2005. Model evaluation and spatial interpolation by Bayesian combination of observations with outputs from numerical models. Biometrics 61:36–45 [Google Scholar]
  23. Gelfand AE, Diggle P, Fuentes M, Guttorp P. 2010. Handbook of Spatial Statistics Boca Raton, FL: CRC
  24. Gelfand AE, Kim H-J, Sirmans CF, Banerjee S. 2003. Spatial modeling with spatially varying coefficient processes. J. Am. Stat. Assoc. 98:387–96 [Google Scholar]
  25. Gelfand AE, Schmidt AM, Banerjee S, Sirmans CF. 2004. Nonstationary multivariate process modeling through spatially varying coregionalization (with discussion). Test 13:263–312 [Google Scholar]
  26. Gelfand AE, Zhu L, Carlin BP. 2001. On the change of support problem for spatio-temporal data. Biostatistics 2:31–45 [Google Scholar]
  27. Gneiting T. 2002. Nonseparable, stationary covariance functions for space-time data. J. Am. Stat. Assoc. 97:590–600 [Google Scholar]
  28. Higdon DM. 1998. A process-convolution approach to modeling temperatures in the north Atlantic Ocean. J. Environ. Ecol. Stat. 5:173–90 [Google Scholar]
  29. Higdon DM. 2002. Space and space-time modeling using process convolutions. Quantitative Methods for Current Environmental Issues C Anderson, V Barnett, PC Chatwin, AH El-Shaarawi 37–56 London: Springer-Verlag [Google Scholar]
  30. Kalnay E. 2003. Atmospheric Modeling, Data Assimilation and Predictability Cambridge, UK: Cambridge Univ. Press
  31. Katzfuss M. 2013. Bayesian nonstationary spatial modeling for very large datasets. Environmetrics 24:189–200 [Google Scholar]
  32. Katzfuss M. 2016. A multi-resolution approximation for massive spatial datasets. J. Am. Stat. Assoc. http://dx.doi.org/10.1080/01621459.2015.1123632
  33. Krige DG. 1951. A statistical approach to some basic mine valuation problems on the Witwatersrand. J. Chem. Metall. Min. Soc. S. Afr. 52:119–39 [Google Scholar]
  34. Little RJA, Rubin DB. 2002. Statistical Analysis with Missing Data New York: Wiley-Interscience
  35. Loh W-H. 2005. Fixed-domain asymptotics for a subclass of Matérn-type Gaussian random fields. Ann. Stat. 33:2344–94 [Google Scholar]
  36. Mardia KV, Goodall C. 1993. Spatio-temporal analyses of multivariate environmental monitoring data. Multivariate Environmental Statistics GP Patil, CR Rao 347–86 Amsterdam: Elsevier [Google Scholar]
  37. Murphy KP. 2012. Machine Learning: A Probabilistic Perspective Cambridge, MA: MIT Press
  38. Paciorek CJ, Schervish M. 2006. Spatial modelling using a new class of nonstationary covariance functions. Environmetrics 17:483–506 [Google Scholar]
  39. Pollock LJ, Tingley R, Morris WK, Golding N, O'Hara RB. et al. 2014. Understanding co-occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM). Methods Ecol. Evol. 5:397–406 [Google Scholar]
  40. Poole D, Raftery AE. 2000. Inference for deterministic simulation models: the Bayesian melding approach. J. Am. Stat. Assoc. 95:1244–55 [Google Scholar]
  41. Ribeiro PJ Jr., Diggle PJ. 2001. geoR: A package for geostatistical analysis. R News 1/2:15–18 [Google Scholar]
  42. Robert CP, Casella G. 2004. Monte Carlo Statistical Methods New York: Springer-Verlag, 2nd ed..
  43. Sang H, Huang JZ. 2012. A full scale approximation of covariance functions for large spatial data sets. J. R. Stat. Soc. B 74:111–32 [Google Scholar]
  44. Sang H, Jun M, Huang JZ. 2011. Covariance approximation for large multivariate spatial data sets with an application to multiple climate model errors. Ann. Appl. Stat. 4:2519–48 [Google Scholar]
  45. Sigrist F, Kuensch HR, Stahel WA. 2015. spate: An R package for spatio-temporal modeling with a stochastic advection-diffusion process. J. Stat. Softw. 63:1–23 [Google Scholar]
  46. Smith BJ, Yan J, Cowles MK. 2008. Unified geostatistical modeling for data fusion and spatial heteroskedasticity with R package ramps. J. Stat. Softw. 25:1–21 [Google Scholar]
  47. Stein ML. 1999a. Interpolation of Spatial Data: Some Theory for Kriging New York: Springer-Verlag
  48. Stein ML. 1999b. Predicting random fields with increasingly dense observations. Ann. Appl. Probability 9:242–73 [Google Scholar]
  49. Stein ML. 2005. Space-time covariance functions. J. Am. Stat. Assoc. 100:310–21 [Google Scholar]
  50. Stein ML. 2014. Limitations on low rank approximations for covariance matrices of spatial data. Spatial Stat. 8:1–19 [Google Scholar]
  51. Stein ML, Chi Z, Welty LJ. 2004. Approximating likelihoods for large spatial datasets. J. R. Stat. Soc. B 66:275–96 [Google Scholar]
  52. Vecchia AV. 1988. Estimation and model identification for continuous spatial processes. J. R. Stat. Soc. B 50:297–312 [Google Scholar]
  53. Ver Hoef JM, Barry RP. 1998. Constructing and fitting models for cokriging and multivariable spatial prediction. J. Stat. Plann. Inference 69:275–94 [Google Scholar]
  54. Wackernagel H. 1994. Cokriging versus kriging in regionalized multivariate data analysis. Geoderma 62:83–92 [Google Scholar]
  55. Wackernagel H. 2003. Multivariate Geostatistics: An Introduction with Applications. New York: Springer-Verlag, 3rd ed..
  56. West M, Harrison PJ. 1997. Bayesian Forecasting and Dynamic Models New York: Springer-Verlag, 2nd ed..
  57. Wikle CK. 2010. Low-rank representations for spatial processes. Handbook of Spatial Statistics AE Gelfand, P Diggle, M Fuentes, P Guttorp 107–18 Boca Raton, FL: Chapman and Hall/CRC [Google Scholar]
  58. Xia G, Gelfand AE. 2006. Stationary process approximation for the analysis of large spatial datasets. Tech. Rep., ISDS, Duke Univ.
  59. Yaglom AM. 1987. Correlation Theory of Stationary and Related Random Functions: Volume I: Basic Results London: Springer
  60. Zhang H, Zimmerman DL. 2005. Towards reconciling two asymptotic frameworks in spatial statistics. Biometrika 92:921–36 [Google Scholar]
/content/journals/10.1146/annurev-statistics-060116-054155
Loading
/content/journals/10.1146/annurev-statistics-060116-054155
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error