1932

Abstract

Following recent progress in super-resolution microscopy in the past decade, massive amounts of redundant single stochastic trajectories are now available for statistical analysis. Flows of trajectories of molecules or proteins sample the cell membrane or its interior at very high time and space resolution. Several statistical analyses were developed to extract information contained in these data, such as the biophysical parameters of the underlying stochastic motion to reveal the cellular organization. These trajectories can further reveal hidden subcellular organization. We review here the statistical analysis of these trajectories based on the classical Langevin equation, which serves as a model of trajectories. Parametric and nonparametric estimators are constructed by discretizing the stochastic equations, and they allow the recovery of tethering forces, diffusion tensors, or membrane organization from measured trajectories that differ from physical ones by a localization noise. Modeling, data analysis, and automatic detection algorithms serve to extract novel biophysical features such as potential wells and other substructures, such as rings, at an unprecedented spatiotemporal resolution. It is also possible to reconstruct the surface membrane of a biological cell from the statistics of projected random trajectories.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-statistics-060116-054204
2017-03-07
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/statistics/4/1/annurev-statistics-060116-054204.html?itemId=/content/journals/10.1146/annurev-statistics-060116-054204&mimeType=html&fmt=ahah

Literature Cited

  1. Aït-Sahalia Y, Jacod J. 2014. High-Frequency Financial Econometrics Princeton, NJ: Princeton Univ. Press [Google Scholar]
  2. Amitai A, Holcman D. 2013. Polymer model with long-range interactions: analysis and applications to the chromatin structure. Phys. Rev. E 88:5052604 [Google Scholar]
  3. Amitai A, Toulouze M, Dubrana K, Holcman D. 2015. Analysis of single locus trajectories for extracting in vivo chromatin tethering interactions. PLOS Comput. Biol. 11:8e1004433 [Google Scholar]
  4. Ashley TT, Andersson SB. 2015. Method for simultaneous localization and parameter estimation in particle tracking experiments. Phys. Rev. E 92:052707 [Google Scholar]
  5. Belopolskaya YI, Dalecky YL. 2014. Stochastic Equations and Differential Geometry Dordrecht, Ger: Springer [Google Scholar]
  6. Berglund AJ. 2010. Statistics of camera-based single-particle tracking. Phys. Rev. E 82:011917 [Google Scholar]
  7. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S. et al. 2006. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–45 [Google Scholar]
  8. Brush SG. 1976. The Kind of Motion We Call Heat: A History of the Kinetic Theory of Gases in the Nineteenth Century, Book 1: Physics and the Atomists Amsterdam: North-Holland Physics Publishing [Google Scholar]
  9. Calderon CP. 2016. Motion blur filtering: a statistical approach for extracting confinement forces and diffusivity from a single blurred trajectory. Phys. Rev. E 93:5053303 [Google Scholar]
  10. Calderon CP, Bloom K. 2015. Inferring latent states and refining force estimates via hierarchical Dirichlet process modeling in single particle tracking experiments. PLOS ONE 10:9e0137633 [Google Scholar]
  11. Calderon CP, Harris NC, Kiang CH, Cox DD. 2009. Quantifying multiscale noise sources in single-molecule experiments via pathwise statistical inference procedures. J. Phys. Chem. B 113:138–48 [Google Scholar]
  12. Calderon CP, Weiss LE, Moerner WE. 2014. Robust hypothesis tests for detecting statistical evidence of two-dimensional and three-dimensional interactions in single-molecule measurements. Phys. Rev. E 89:052705 [Google Scholar]
  13. Chandrasekhar S. 1943. Stochastic problems in physics and astrophysics. Rev. Mod. Phys. 15:1–89 [Google Scholar]
  14. Chenouard N, Smal I, de Chaumont F, Maška M, Sbalzarini IF. et al. 2014. Objective comparison of particle tracking methods. Nat. Methods 11:3281–89 [Google Scholar]
  15. de Chaumont F, Dallongeville S, Chenouard N, Hervé N, Pop S. et al. 2012. Icy: an open bioimage informatics platform for extended reproducible research. Nat. Methods 9:690–96 [Google Scholar]
  16. Destainville N, Salomé L. 2006. Quantification and correction of systematic errors due to detector time-averaging in single-molecule tracking experiments. Biophys. J. 90:2L17–19 [Google Scholar]
  17. Doi M, Edwards SF. 1986. The Theory of Polymer Dynamics Oxford, UK: Clarendon Press [Google Scholar]
  18. Edidin M. 1992. Patches, posts and fences: proteins and plasma membrane domains. Trends Cell Biol. 2:12376–80 [Google Scholar]
  19. Einstein A. 1956. Investigations on the Theory of the Brownian Movement New York: Dover [Google Scholar]
  20. Fox E, Sudderth E, Jordan M, Willsky A. 2010. Bayesian Nonparametric Methods for Learning Markov Switching Processes. IEEE Signal. Process Mag. 27:43–54 [Google Scholar]
  21. Fox E, Sudderth E, Jordan M, Willsky A. 2011. Bayesian Nonparametric Inference of Switching Dynamic Linear Models. IEEE Trans. Signal. Process 59:1569–85 [Google Scholar]
  22. Friedrich R, Peinke J. 1997. Description of a turbulent cascade by a Fokker-Planck equation. Phys. Rev. Lett. 78:863–66 [Google Scholar]
  23. Fusco D, Accornero N, Lavoie B, Shenoy SM, Blanchard JM. et al. 2003. Single mRNA molecules demonstrate probabilistic movement in living mammalian cells. Curr. Biol. 13:161–67 [Google Scholar]
  24. Gebhardt JC, Suter DM, Roy R, Zhao ZW, Chapman AR. et al. 2013. Single-molecule imaging of transcription factor binding to DNA in live mammalian cells. Nat. Methods 10:421–26 [Google Scholar]
  25. Ghosh RN, Webb WW. 1994. Automated detection and tracking of individual and clustered cell surface low density lipoprotein receptor molecules. Biophys. J. 66:1301–18 [Google Scholar]
  26. Giannone G, Hosy E, Levet F, Constals A, Schulze K. et al. 2010. Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density. Biophys. J. 99:1303–10 [Google Scholar]
  27. Gorelashvili M, Emmert M, Hodeck K, Heinrich D. 2014. Amoeboid migration mode adaption in quasi-3D spatial density gradients of varying lattice geometry. New J. Phys. 16:075012 [Google Scholar]
  28. Goulian M, Simon SM. 2000. Tracking single proteins within cells. Biophys. J. 79:2188–98 [Google Scholar]
  29. Gunzenhäuser J, Wyss R, Manley S. 2014. A quantitative approach to evaluate the impact of fluorescent labeling on membrane-bound HIV-Gag assembly by titration of unlabeled proteins. PLOS ONE 9:12e115095 [Google Scholar]
  30. Hamilton JD. 1994. Time Series Analysis Princeton, NJ: Princeton Univ. Press [Google Scholar]
  31. Hell SW, Wichmann J. 1994. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19:780–82 [Google Scholar]
  32. Hess ST, Gould TJ, Gudheti MV, Maas SA, Mills KD, Zimmerberg J. 2007. Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories. PNAS 104:17370–75 [Google Scholar]
  33. Holcman D. 2013. Unraveling novel features hidden in superresolution microscopy data. Commun. Integr. Biol. 6:3e23893 [Google Scholar]
  34. Holcman D, Hozé N, Schuss Z. 2015. Analysis and interpretation of superresolution single-particle trajectories. Biophys. J. 109:1761–71 [Google Scholar]
  35. Holden SJ, Pengo T, Meibom KL, Fernandez Fernandez C, Collier J, Manley S. 2014. High throughput 3D super-resolution microscopy reveals Caulobacter crescentus in vivo Z-ring organization. PNAS 111:4566–71 [Google Scholar]
  36. Hosy E, Martinière A, Choquet D, Maurel C, Luu DT. 2015. Super-resolved and dynamic imaging of membrane proteins in plant cells reveal contrasting kinetic profiles and multiple confinement mechanisms. Mol. Plant 8:339–42 [Google Scholar]
  37. Hozé N, Holcman D. 2013. Potential wells for AMPA receptors organized in ring nanodomains. arXiv1309.3436 [q-bio.SC]
  38. Hozé N, Holcman D. 2014. Residence times of receptors in dendritic spines analyzed by stochastic simulations in empirical domains. Biophys. J. 107:3008–17 [Google Scholar]
  39. Hozé N, Holcman D. 2015. Recovering a stochastic process from super-resolution noisy ensembles of single-particle trajectories. Phys. Rev. E 92:5052109 [Google Scholar]
  40. Hozé N, Nair D, Hosy E, Sieben C, Manley S. et al. 2012. Heterogeneity of receptor trafficking and molecular interactions revealed by superresolution analysis of live cell imaging. PNAS 109:17052–57 [Google Scholar]
  41. Hozé N, Schuss Z, Holcman D. 2013. Reconstruction of surface and stochastic dynamics from a planar projection of trajectories. SIAM J. Imaging Sci. 6:2430–49 [Google Scholar]
  42. Jonas KC, Huhtaniemi I, Hanyaloglu AC. 2015. Single-molecule resolution of G protein-coupled receptor (GPCR) complexes. Methods Cell Biol. 132:55–72 [Google Scholar]
  43. Kantor Y, Kardar M. 2007. Anomalous diffusion with absorbing boundary. Phys. Rev. E 76:061121 [Google Scholar]
  44. Karlin S, Taylor HM. 1981. A Second Course on Stochastic Processes New York: Academic Press [Google Scholar]
  45. Kepten E, Bronshtein I, Garini Y. 2011. Ergodicity convergence test suggests telomere motion obeys fractional dynamics. Phys. Rev. E 83:041919 [Google Scholar]
  46. Knight SC, Xie L, Deng W, Guglielmi B, Witkowsky LB. et al. 2015. Dynamics of CRISPR-Cas9 genome interrogation in living cells. Science 350:823–26 [Google Scholar]
  47. Komis G, Šamajová O, Ovečka M, Šamaj J. 2015. Super-resolution microscopy in plant cell imaging. Trends Plant Sci. 20:834–43 [Google Scholar]
  48. Kupferman R, Pavliotis GA, Stuart AM. 2004. Ito versus Stratonovich white-noise limits for systems with inertia and colored multiplicative noise. Phys. Rev. E 70:036120 [Google Scholar]
  49. Kusumi A, Sako Y, Yamamoto M. 1993. Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys. J. 65:2021–40 [Google Scholar]
  50. Langevin P. 1908. Sur la théorie du mouvement brownien. CR Acad. Sci. Paris 146:530–33530 [Google Scholar]
  51. Li Y, Shang L, Nienhaus GU. 2016. Super-resolution imaging-based single particle tracking reveals dynamics of nanoparticle internalization by live cells. Nanoscale 8:7423–29 [Google Scholar]
  52. Liu Z, Lavis LD, Betzig E. 2015. Imaging live-cell dynamics and structure at the single-molecule level. Mol. Cell 58:644–59 [Google Scholar]
  53. Lu HE, MacGillavry HD, Frost NA, Blanpied TA. 2014. Multiple spatial and kinetic subpopulations of CaMKII in spines and dendrites as resolved by single-molecule tracking PALM. J. Neurosci. 34:7600–10 [Google Scholar]
  54. Manley S, Gillette JM, Patterson GH, Shroff H, Hess HF. et al. 2008. High-density mapping of single molecule trajectories with photoactivated localization microscopy. Nat. Methods 5:155–57 [Google Scholar]
  55. Masson JB, Dionne P, Salvatico C, Renner M, Specht CG. et al. 2014. Mapping the energy and diffusion landscapes of membrane proteins at the cell surface using high-density single-molecule imaging and Bayesian inference: application to the multiscale dynamics of glycine receptors in the neuronal membrane. Biophys. J. 106:74–83 [Google Scholar]
  56. Meroz Y, Sokolov IM. 2015. A toolbox for determining subdiffusive mechanisms. Phys. Rep. 573:1–30 [Google Scholar]
  57. Metzler R, Jeon JH, Cherstvy A, Barkai E. 2014. Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys. 16:24128–64 [Google Scholar]
  58. Metzler R, Klafter J. 2000. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339:1–77 [Google Scholar]
  59. Michalet X. 2010. Mean square displacement analysis of single-particle trajectories with localization error: Brownian motion in an isotropic medium. Phys. Rev. E 82:4041914 [Google Scholar]
  60. Min J, Holden SJ, Carlini L, Unser M, Manley S, Ye JC. 2014. 3D high-density localization microscopy using hybrid astigmatic/biplane imaging and sparse image reconstruction. Biomed. Opt. Express 5:3935–48 [Google Scholar]
  61. Montiel D, Cang H, Yang H. 2006. Quantitative characterization of changes in dynamical behavior for single-particle tracking studies. J. Phys. Chem. B 110:19763–70 [Google Scholar]
  62. Nair D, Hosy E, Petersen JD, Constals A, Giannone G. et al. 2013. Super-resolution imaging reveals that AMPA receptors inside synapses are dynamically organized in nanodomains regulated by PSD95. J. Neurosci. 33:13204–24 [Google Scholar]
  63. Qian H, Sheetz MP, Elson EL. 1991. Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophys. J. 60:910–21 [Google Scholar]
  64. Rao BP. 1999. Statistical Inference for Diffusion Type Processes London: Arnold Publishers [Google Scholar]
  65. Rines DR, Thomann D, Dorn JF, Goodwin P, Sorger PK. 2011. Live cell imaging of yeast. Cold Spring Harb. Protoc. doi:10.1101/pdb.top065482 [Google Scholar]
  66. Ritchie K, Shan XY, Kondo J, Iwasawa K, Fujiwara T, Kusumi A. 2005. Detection of non-Brownian diffusion in the cell membrane in single molecule tracking. Biophys. J. 88:2266–77 [Google Scholar]
  67. Rossier O, Giannone G. 2015. The journey of integrins and partners in a complex interactions landscape studied by super-resolution microscopy and single protein tracking. Exp. Cell Res. 343:28–34 [Google Scholar]
  68. Rust MJ, Bates M, Zhuang X. 2006. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3:793–96 [Google Scholar]
  69. Saffman PG, Delbrück M. 1975. Brownian motion in biological membranes. PNAS 72:3111–13 [Google Scholar]
  70. Sage D, Kirshner H, Pengo T, Stuurman N, Min J. et al. 2015. Quantitative evaluation of software packages for single-molecule localization microscopy. Nat. Methods 12:717–24 [Google Scholar]
  71. Savin T, Doyle PS. 2005. Static and dynamic errors in particle tracking microrheology. Biophys. J. 88:623–38 [Google Scholar]
  72. Saxton MJ. 1995. Single-particle tracking: effects of corrals. Biophys. J. 69:389–98 [Google Scholar]
  73. Saxton MJ. 1997. Single-particle tracking: the distribution of diffusion coefficients. Biophys. J. 72:1744–53 [Google Scholar]
  74. Saxton MJ. 2008. Single-particle tracking: connecting the dots. Nat. Methods 5:671–72 [Google Scholar]
  75. Schneider R, Hosy E, Kohl J, Klueva J, Choquet D. et al. 2015. Mobility of calcium channels in the presynaptic membrane. Neuron 86:672–79 [Google Scholar]
  76. Schuss Z. 2010. Theory and Applications of Stochastic Processes: An Analytical Approach New York: Springer [Google Scholar]
  77. Schuss Z. 2011. Nonlinear Filtering and Optimal Phase Tracking New York: Springer [Google Scholar]
  78. Schuss Z. 2013. Brownian Dynamics at Boundaries and Interfaces in Physics, Chemistry, and Biology New York: Springer [Google Scholar]
  79. Sengupta P, Van Engelenburg S, Lippincott-Schwartz J. 2012. Visualizing cell structure and function with point-localization superresolution imaging. Dev. Cell 6:1092–102 [Google Scholar]
  80. Shav-Tal Y, Darzacq X, Shenoy SM, Fusco D, Janicki SM. et al. 2004. Dynamics of single mRNPs in nuclei of living cells. Science 304:1797–800 [Google Scholar]
  81. Siegert S, Friedrich R, Peinke J. 1998. Analysis of data sets of stochastic systems. Phys. Lett. A 243:275–80 [Google Scholar]
  82. Teh YW, Jordan MI, Beal MJ, Blei DM. 2006. Hierarchical Dirichlet processes. J. Am. Stat. Assoc. 101:1566–81 [Google Scholar]
  83. Tejedor V, Benichou O, Voituriez R, Jungmann R, Simmel F. et al. 2010. Quantitative analysis of single particle trajectories: mean maximal excursion method. Biophys. J. 98:1364–72 [Google Scholar]
  84. Thompson RE, Larson DR, Webb WW. 2002. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82:2775–83 [Google Scholar]
  85. Tokuda N, Terada TP, Sasai M. 2012. Dynamical modeling of three-dimensional genome organization in interphase budding yeast. Biophys. J. 102:296–304 [Google Scholar]
  86. Vestergaard CL, Blainey P, Flyvbjerg H. 2014. Optimal estimation of diffusion coefficients from single-particle trajectories. Phys. Rev. E 89:022726 [Google Scholar]
  87. Vestergaard CL, Pedersen JN, Mortensen KI, Flyvbjerg H. 2015. Estimation of motility parameters from trajectory data. Eur. Phys. J. Spec. Top. 224:1151–68 [Google Scholar]
  88. Wong H, Marie-Nelly H, Herbert S, Carrivain P, Blanc H. et al. 2012. A predictive computational model of the dynamic 3D interphase yeast nucleus. Curr. Biol. 22:1881–90 [Google Scholar]
  89. Zhang R, Tsai PS, Cryer JE, Shah M. 1999. Shape-from-shading: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 21:690–706 [Google Scholar]
/content/journals/10.1146/annurev-statistics-060116-054204
Loading
/content/journals/10.1146/annurev-statistics-060116-054204
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error