1932

Abstract

In vitro selection allows rare functional RNA or DNA molecules to be isolated from pools of over 1015 different sequences. This approach has been used to identify RNA and DNA ligands for numerous small molecules, and recent three-dimensional structure solutions have revealed the basis for ligand recognition in several cases. By selecting high-affinity and -specificity nucleic acid ligands for proteins, promising new therapeutic and diagnostic reagents have been identified. Selection experiments have also been carried out to identify ribozymes that catalyze a variety of chemical transformations, including RNA cleavage, ligation, and synthesis, as well as alkylation and acyl-transfer reactions and N-glycosidic and peptide bond formation. The existence of such RNA enzymes supports the notion that ribozymes could have directed a primitive metabolism before the evolution of protein synthesis. New in vitro protein selection techniques should allow for a direct comparison of the frequency of ligand binding and catalytic structures in pools of random sequence polynucleotides versus polypeptides.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.biochem.68.1.611
1999-07-01
2024-06-16
Loading full text...

Full text loading...

/deliver/fulltext/biochem/68/1/annurev.biochem.68.1.611.html?itemId=/content/journals/10.1146/annurev.biochem.68.1.611&mimeType=html&fmt=ahah

Literature Cited

  1. Szostak JW, Ellington AD. 1993. See Ref. 204 511–33
  2. Gold L, Allen P, Binkley J, Brown D, Schneider D. et al. 1993. See Ref. 204 497–509
  3. Joyce GF. 1994. Curr. Opin. Struct. Biol. 4:331–36 [Google Scholar]
  4. Jaeger L. 1997. Curr. Opin. Struct. Biol. 7:324–35 [Google Scholar]
  5. Breaker RR. 1997. Chem. Rev. 97:371–90 [Google Scholar]
  6. Gold L, Brown D, He YY, Shtatland T, Singer BS, Wu Y. 1997. Proc. Natl. Acad. Sci. USA 94:59–64 [Google Scholar]
  7. Tian Y, Adya N, Wagner S, Giam CZ, Green MR, Ellington AD. 1995. RNA 1:317–26 [Google Scholar]
  8. Davis KA, Abrams B, Lin Y, Jayasena SD. 1996. Nucleic Acids Res. 24:702–6 [Google Scholar]
  9. Drolet DW, Moon-McDermott L, Romig TS. 1996. Nat. Biotechnol. 14:1021–25 [Google Scholar]
  10. Bartel DP, Szostak JW. 1994. In RNA-Protein Interactions, ed. K Nagai, IW Mattaj 248–65 Oxford: IRL
  11. Famulok M, Jenne A. 1998. Curr. Opin. Chem. Biol. 2:320–27 [Google Scholar]
  12. Frank DN, Pace NR. 1997. Proc. Natl. Acad. Sci. USA 94:14355–60 [Google Scholar]
  13. Geyer CR, Sen D. 1997. Chem. Biol. 4:579–93 [Google Scholar]
  14. Costa M, Michel F. 1997. EMBO J. 16:3289–302 [Google Scholar]
  15. Kumar PKR, Ellington AD. 1995. FASEB J. 9:1183–95 [Google Scholar]
  16. Szostak JW. 1992. Trends Biochem. Sci. 17:89–93 [Google Scholar]
  17. Chapman KB, Szostak JW. 1994. Curr. Opin. Struct. Biol. 4:618–22 [Google Scholar]
  18. Lorsch JR, Szostak JW. 1995. Acc. Chem. Res. 29:103–10 [Google Scholar]
  19. Gold L, Polisky B, Uhlenbeck O, Yarus M. 1995. Annu. Rev. Biochem. 64:763–97 [Google Scholar]
  20. Eaton BE, Gold L, Zichi DA. 1995. Chem. Biol. 2:633–38 [Google Scholar]
  21. Hirao I, Ellington AD. 1996. Curr. Biol. 5:1017–22 [Google Scholar]
  22. Spiegelman S. 1971. Q. Rev. Biophys. 4:213–53 [Google Scholar]
  23. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT. et al. 1985. Science 230:1350–54 [Google Scholar]
  24. Ellington AD, Szostak JW. 1990. Nature 346:818–22 [Google Scholar]
  25. Tuerk C, Gold L. 1990. Science 249:505–10 [Google Scholar]
  26. Thiesen H-J, Bach C. 1990. Nucleic Acids Res. 18:3203–9 [Google Scholar]
  27. Ellington AD, Szostak JW. 1992. Nature 355:850–52 [Google Scholar]
  28. Ciesiolka J, Yarus M. 1996. RNA 2:785–93 [Google Scholar]
  29. Nieuwlandt D, Wecker M, Gold L. 1995. Biochemistry 43:5651–59 [Google Scholar]
  30. Ringquist S, Jones T, Snyder EE, Gibson T, Boni I, Gold L. 1995. Biochemistry 34:3640–48 [Google Scholar]
  31. Pan WH, Craven RC, Qiu Q, Wilson CB, Wills JW. et al. 1995. Proc. Natl. Acad. Sci. USA 92:11509–13 [Google Scholar]
  32. Morris KN, Jensen KB, Julin CM, Weil M, Gold L. 1998. Proc. Natl. Acad. Sci. USA 95:2902–7 [Google Scholar]
  33. Cech TR. 1993. See Ref. 204 239–69
  34. Yarus M. 1993. See Ref. 204 205–17
  35. Piccirilli JA, Krauch T, Moroney SE, Benner SA. 1990. Nature 343:33–37 [Google Scholar]
  36. Piccirilli JA, Moroney SE, Benner SA. 1991. Biochemistry 30:10350–56 [Google Scholar]
  37. Horlacher J, Hottiger M, Podust VN, Hubscher U, Benner SA. 1995. Proc. Natl. Acad. Sci. USA 92:6329–33 [Google Scholar]
  38. Lutz M, Held HA, Hottiger M, Hubscher U, Benner SA. 1996. Nucleic Acids Res. 24:1308–13 [Google Scholar]
  39. Sassanfar M, Szostak JW. 1993. Nature 364:550–53 [Google Scholar]
  40. Connell GJ, Illangesekare M, Yarus M. 1993. Biochemistry 32:5497–502 [Google Scholar]
  41. Connell G, Yarus M. 1994. Science 264:1137–41 [Google Scholar]
  42. Jenison RD, Gill SC, Pardi A, Polisky B. 1994. Science 263:1425–29 [Google Scholar]
  43. Huizenga DE, Szostak JW. 1995. Biochemistry 34:656–65 [Google Scholar]
  44. Conn MM, Prudent JR, Schultz PG. 1996. J. Am. Chem. Soc. 118:7012–13 [Google Scholar]
  45. Li Y, Sen D. 1996. Nat. Struct. Biol. 3:743–47 [Google Scholar]
  46. Harada K, Frankel AD. 1995. EMBO J. 14:5798–811 [Google Scholar]
  47. Lauhon CT, Szostak JW. 1995. J. Am. Chem. Soc. 117:1246–57 [Google Scholar]
  48. Jiang F, Kumar RA, Jones RA, Patel DJ. 1996. Nature 382:183–86 [Google Scholar]
  49. Dieckmann T, Suzuki E, Nakamura GK, Feigon J. 1996. RNA 2:628–40 [Google Scholar]
  50. Dieckmann T, Butcher SE, Sassanfar M, Szostak JW, Feigon J. 1997. J. Mol. Biol. 273:467–78 [Google Scholar]
  51. Lin CH, Patel DJ. 1997. Chem. Biol. 4:817–32 [Google Scholar]
  52. Zimmermann GR, Jenison RD, Wick CL, Simorre J-P, Pardi A. 1997. Nat. Struct. Biol. 4:644–49 [Google Scholar]
  53. Zimmermann GR, Shields TP, Jenison RD, Wick CL, Pardi A. 1998. Biochemistry 37:9186–92 [Google Scholar]
  54. Fan P, Suri AK, Fiala R, Live D, Patel DJ. 1996. J. Mol. Biol. 258:480–500 [Google Scholar]
  55. Wang Y, Rando RR. 1995. Chem. Biol. 2:281–90 [Google Scholar]
  56. Jiang L, Suri AK, Fiala R, Patel DJ. 1997. Chem. Biol. 4:35–50 [Google Scholar]
  57. Jiang L, Patel DJ. 1998. Nat. Struct. Biol. 5:769–74 [Google Scholar]
  58. Famulok M. 1994. J. Am. Chem. Soc. 116:1698–706 [Google Scholar]
  59. Yang Y, Kochoyan M, Burgstaller P, Westhof E, Famulok M. 1996. Science 272:1343–47 [Google Scholar]
  60. Lin CH, Patel DJ. 1996. Nat. Struct. Biol. 3:1046–50 [Google Scholar]
  61. Geiger A, Burgstaller P, von der Eltz H, Roeder A, Famulok M. 1996. Nucleic Acids Res. 24:1029–36 [Google Scholar]
  62. Feigon J, Dieckmann T, Smith FW. 1996. Chem. Biol. 3:611–17 [Google Scholar]
  63. Patel DJ, Suri AK, Jiang F, Jiang L, Fan P. et al. 1997. J. Mol. Biol. 272:645–64 [Google Scholar]
  64. Marshall KA, Robertson MP, Ellington AD. 1997. Structure 5:729–34 [Google Scholar]
  65. Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ. 1992. Nature 355:564–66 [Google Scholar]
  66. Griffin LC, Tidmarsh GF, Bock LC, Toole JJ, Leung LLK. 1993. Blood 81:3271–76 [Google Scholar]
  67. Macaya RF, Schultz P, Smith FW, Roe JA, Feigon J. 1993. Proc. Natl. Acad. Sci. USA 90:3745–49 [Google Scholar]
  68. Wang KY, McCardy S, Shea RG, Swaminathan S, Bolton PH. 1993. Biochemistry 32:1899–904 [Google Scholar]
  69. Padmanabhan K, Padmanabhan KP, Ferrara JD, Sadler JE, Tulinsky A. 1993. J. Biol. Chem. [Google Scholar]
  70. Kelly JA, Feigon J, Yeates TO. 1996. J. Mol. Biol. 256:417–22 [Google Scholar]
  71. Fitzwater T, Polisky B. 1996. Methods Enzymol. 267:275–301 [Google Scholar]
  72. Conrad RC, Giver L, Tian Y, Ellington AD. 1996. Methods Enzymol. 267:336–67 [Google Scholar]
  73. Davis JP, Janic N, Javornik BE, Zichi DA. 1996. Methods Enzymol. 267:302–14 [Google Scholar]
  74. Ciesiolka J, Illangasekare M, Majerfeld I, Nickles T, Welch M. et al. 1996. Methods Enzymol. 267:315–35 [Google Scholar]
  75. Keene JD. 1996. Chem. Biol. 3:505–13 [Google Scholar]
  76. Gold L, Singer B, He Y-Y, Brody E. 1997. Curr. Opin. Genet. Dev. 7:848–51 [Google Scholar]
  77. Singer BS, Shtatland T, Brown D, Gold L. 1997. Nucleic Acids Res. 25:781–86 [Google Scholar]
  78. Pieken WA, Olsen DB, Benseler F, Aurup H, Eckstein F. 1991. Science 253:314–17 [Google Scholar]
  79. Lin Y, Qiu Q, Gill SC, Jayasen SD. 1994. Nucleic Acids Res. 22:5229–34 [Google Scholar]
  80. Green LS, Jellinek D, Bell C, Beebe LA, Feistner B. et al. 1995. Chem. Biol. 2:683–95 [Google Scholar]
  81. Pagratis NC, Bell C, Chang YF, Jennings S, Fitzwater T. et al. 1997. Nat. Biotechnol. 15:68–73 [Google Scholar]
  82. Kubik MF, Bell C, Fitzwater T, Watson SR, Tasset DM. 1997. J. Immunol. 159:259–67 [Google Scholar]
  83. Jellinek D, Green LS, Bell C, Lynott CK, Gill N. et al. 1995. Biochemistry 34:11363–72 [Google Scholar]
  84. Wiegand TW, Williams PB, Dreskin SC, Jouvin MH, Kinet JP, Tasset D. 1996. J. Immunol. 157:221–30 [Google Scholar]
  85. Hicke BJ, Watson SR, Koenig A, Lynott CK, Bargatze RF. et al. 1996. J. Clin. Invest. 98:2688–92 [Google Scholar]
  86. Gold L. 1995. J. Biol. Chem. 270:13581–84 [Google Scholar]
  87. Willis MC, Collins B, Zhang T, Green LS, Sebesta D. et al. 1998. Bioconjug. Chem. 9:573–82 [Google Scholar]
  88. Williams KP, Liu X-H, Schumacher TNM, Lin HY, Ausiello DA. et al. 1997. Proc. Natl. Acad. Sci. USA 94:11285–90 [Google Scholar]
  89. Klussmann S, Nolte A, Bald R, Erdmann VA, Fürste JP. 1996. Nat. Biotechnol. 14:1112–15 [Google Scholar]
  90. Nolte A, Klussmann S, Bald R, Erdmann VA, Fürste JP. 1996. Nat. Biotechnol. 14:1116–19 [Google Scholar]
  91. Charlton J, Kirschenheuter GP, Smith D. 1997. Biochemistry 36:3018–26 [Google Scholar]
  92. Bless NM, Smith D, Charlton J, Czermak BJ, Schmal H. et al. 1997. Curr. Biol. 7:877–80 [Google Scholar]
  93. Michel F, Ellington AD, Couture S, Szostak JW. 1990. Nature 347:578–80 [Google Scholar]
  94. Green R, Ellington AD, Szostak JW. 1990. Nature 347:406–8 [Google Scholar]
  95. Green R, Szostak JW. 1992. Science 258:1910–15 [Google Scholar]
  96. Beaudry AA, Joyce GF. 1992. Science 257:635–41 [Google Scholar]
  97. Bartel DP, Szostak JW. 1993. Science 261:1411–18 [Google Scholar]
  98. Lehman N, Joyce GF. 1993. Nature 361:182–85 [Google Scholar]
  99. Tsang J, Joyce GF. 1994. Biochemistry 33:5966–73 [Google Scholar]
  100. Chapman KB, Szostak JW. 1995. Chem. Biol. 2:325–33 [Google Scholar]
  101. Tsang J, Joyce GF. 1996. J. Mol. Biol. 262:31–42 [Google Scholar]
  102. Hager AJ, Szostak JW. 1997. Chem. Biol. 4:607–17 [Google Scholar]
  103. Tuschl T, Sharp PA, Bartel DP. 1998. EMBO J. 17:2637–50 [Google Scholar]
  104. Cadwell RC, Joyce GF. 1992. PCR Methods Appl. 2:28–33 [Google Scholar]
  105. Zaug AJ, Cech TR. 1986. Science 231:470–75 [Google Scholar]
  106. Robertson DL, Joyce GF. 1990. Nature 344:467–68 [Google Scholar]
  107. Ekland EH, Szostak JW, Bartel DP. 1995. Science 269:364–70 [Google Scholar]
  108. Ekland EH, Bartel DP. 1995. Nucleic Acids Res. 23:3231–38 [Google Scholar]
  109. Lorsch JR, Szostak JW. 1994. Nature 371:31–36 [Google Scholar]
  110. Lorsch JR, Szostak JW. 1995. Biochemistry 34:15315–27 [Google Scholar]
  111. Huang F, Yarus M. 1997. Biochemistry 36:6557–63 [Google Scholar]
  112. Pan T, Uhlenbeck OC. 1992. Biochemistry 31:3887–95 [Google Scholar]
  113. Huang F, Yarus M. 1997. Proc. Natl. Acad. Sci. USA 94:8965–69 [Google Scholar]
  114. Frank DN, Ellington AD, Pace NR. 1996. RNA 2:1179–88 [Google Scholar]
  115. Pan T. 1995. Biochemistry 34:8458–64 [Google Scholar]
  116. Joseph S, Berzal-Herranz A, Chowrira BM, Butcher SE, Burke JM. 1993. Genes Dev. 7:130–38 [Google Scholar]
  117. Siwkowski A, Humphrey M, De-Young MB, Hampel A. 1998. Biotechniques 24:278–84 [Google Scholar]
  118. Nishikawa F, Kawakami J, Chiba A, Shirai M, Kumar PKR, Nishikawa S. 1996. Eur. J. Biochem. 237:712–18 [Google Scholar]
  119. Williams KP, Ciafré S, Tocchini-Valentini GP. 1995. EMBO J. 14:4551–57 [Google Scholar]
  120. Jayasena VK, Gold L. 1997. Proc. Natl. Acad. Sci. USA 94:10612–17 [Google Scholar]
  121. Breaker RR. 1997. Nat. Biotechnol. 15:427–31 [Google Scholar]
  122. Breaker RR, Joyce GF. 1994. Chem. Biol. 1:223–29 [Google Scholar]
  123. Breaker RR, Joyce GF. 1995. Chem. Biol. 2:655–60 [Google Scholar]
  124. Santoro SW, Joyce GF. 1997. Proc. Natl. Acad. Sci. USA 94:4262–66 [Google Scholar]
  125. Faulhammer D, Famulok M. 1997. J. Mol. Biol. 269:188–202 [Google Scholar]
  126. Faulhammer D, Famulok M. 1996. Angew. Chem. Int. Ed. Engl. 35:2837–41 [Google Scholar]
  127. Roth A, Breaker RR. 1998. Proc. Natl. Acad. Sci. USA 95:6027–31 [Google Scholar]
  128. Cuenoud B, Szostak JW. 1995. Nature 375:611–14 [Google Scholar]
  129. Wilson C, Szostak JW. 1995. Nature 374:777–82 [Google Scholar]
  130. Illangasekare M, Sanchez G, Nickles T, Yarus M. 1995. Science 267:643–47 [Google Scholar]
  131. Illangasekare M, Yarus M. 1997. J. Mol. Biol. 268:631–39 [Google Scholar]
  132. Lohse PA, Szostak JW. 1996. Nature 381:442–44 [Google Scholar]
  133. Suga H, Szostak JW. 1998. J. Am. Chem. Soc. 120:1151–56 [Google Scholar]
  134. Zhang B, Cech TR. 1997. Nature 390:96–100 [Google Scholar]
  135. Noller HF, Hoffarth V, Zimniak L. 1992. Science 256:1420–24 [Google Scholar]
  136. Green R, Noller HF. 1997. Annu. Rev. Biochem. 66:679–716 [Google Scholar]
  137. Nitta I, Ueda T, Watanabe K. 1998. RNA 4:257–67 [Google Scholar]
  138. Nitta I, Kamada Y, Noda H, Ueda T, Watanabe K. 1998. Science 281:666–69 [Google Scholar]
  139. Hausch F, Jässchke A. 1997. Bioconjug. Chem. 8:885–90 [Google Scholar]
  140. Tarasow TM, Tarasow SL, Eaton BE. 1997. Nature 389:54–57 [Google Scholar]
  141. Wiegand TW, Janssen RC, Eaton BE. 1997. Chem. Biol. 4:675–83 [Google Scholar]
  142. Lerner RA, Benkovic SJ, Schultz PG. 1991. Science 252:659–67 [Google Scholar]
  143. Prudent JR, Uno T, Schultz PG. 1994. Science 264:1924–27 [Google Scholar]
  144. Li Y, Sen D. 1997. Biochemistry 36:5589–99 [Google Scholar]
  145. Li Y, Sen D. 1998. Chem. Biol. 5:1–12 [Google Scholar]
  146. Sabeti PC, Unrau PJ, Bartel DP. 1997. Chem. Biol. 4:767–74 [Google Scholar]
  147. Tang Y, Kochoyan M, Burgstaller P, Westhof E, Famulok M. 1996. Science 272:1343–47 [Google Scholar]
  148. Schuster P, Fontana W, Stadler PF, Hofacker IL. 1994. Proc. R. Soc. London Ser. B 255:279–84 [Google Scholar]
  149. Huynen MA, Stadler PF, Fontana W. 1996. Proc. Natl. Acad. Sci. USA 93:397–401 [Google Scholar]
  150. Huynen MA. 1996. J. Mol. Evol. 43:165–69 [Google Scholar]
  151. Hanczyc MM, Dorit RL. 1998. RNA 4:268–75 [Google Scholar]
  152. Treiber DK, Rook MS, Zarrinkar PP, Williamson JR. 1998. Science 279:1943–46 [Google Scholar]
  153. Zarrinkar PP, Williamson JR. 1994. Science 265:918–24 [Google Scholar]
  154. Sclavi B, Sullivan M, Chance MR, Brenowitz M, Woodson SA. 1998. Science 279:1940–43 [Google Scholar]
  155. Wright MC, Joyce GF. 1997. Science 276:614–17 [Google Scholar]
  156. Hager AJ, Pollard JD, Szostak JW. 1996. Chem. Biol. 3:717–25 [Google Scholar]
  157. Doudna JA, Szostak JW. 1989. Nature 339:519–24 [Google Scholar]
  158. Doudna JA, Szostak JW. 1989. Mol. Cell. Biol. 9:5480–83 [Google Scholar]
  159. Doudna JA, Couture S, Szostak JW. 1991. Science 251:1605–8 [Google Scholar]
  160. Bartel DP, Doudna JA, Usman N, Szostak JW. 1991. Mol. Cell. Biol. 11:3390–94 [Google Scholar]
  161. Doudna JA, Usman N, Szostak JW. 1993. Biochemistry 32:2111–25 [Google Scholar]
  162. Ekland EH, Bartel DP. 1996. Nature 382:373–76 [Google Scholar]
  163. Unrau PJ, Bartel DP. 1998. Nature 395:260–63 [Google Scholar]
  164. Robertson MP, Miller SL. 1995. Science 268:702–5 [Google Scholar]
  165. Dai X, de Mesmaeker A, Joyce GF. 1995. Science 267:237–40 [Google Scholar]
  166. Dai X, de Mesmaeker A, Joyce GF. 1996. Science 272:18–19 [Google Scholar]
  167. Breaker RR, Joyce GF. 1995. J. Mol. Evol. 40:551–58 [Google Scholar]
  168. Narlikar GJ, Herschlag D. 1997. Annu. Rev. Biochem. 66:19–49 [Google Scholar]
  169. Herschlag D, Cech TR. 1990. Biochemistry 29:10159–71 [Google Scholar]
  170. Beebe JA, Fierke CA. 1994. Biochemistry 33:10294–304 [Google Scholar]
  171. Mei R, Herschlag D. 1996. Biochemistry 35:5796–809 [Google Scholar]
  172. Emerick VL, Pan J, Woodson SA. 1996. Biochemistry 35:13469–77 [Google Scholar]
  173. Herschlag D. 1992. Biochemistry 31:1386–99 [Google Scholar]
  174. Tang J, Breaker RR. 1997. Chem. Biol. 4:453–59 [Google Scholar]
  175. Peracchi A, Beigelman L, Usman N, Herschlag D. 1996. Proc. Natl. Acad. Sci. USA 93:11522–27 [Google Scholar]
  176. Tang J, Breaker RR. 1998. Nucleic Acids Res. 26:4222–29 [Google Scholar]
  177. Smith GP. 1985. Science 228:1315–17 [Google Scholar]
  178. Scott JK, Smith GP. 1990. Science 249:386–90 [Google Scholar]
  179. Mattheakis LC, Bhatt RR, Dower WJ. 1994. Proc. Natl. Acad. Sci. USA 91:9022–26 [Google Scholar]
  180. Hanes J, Pluckthun A. 1997. Proc. Natl. Acad. Sci. USA 94:4937–42 [Google Scholar]
  181. He M, Taussig MJ. 1997. Nucleic Acids Res. 25:5132–34 [Google Scholar]
  182. Roberts RW, Szostak JW. 1997. Proc. Natl. Acad. Sci. USA 94:12297–302 [Google Scholar]
  183. Fontana W, Konings DAM, Stadler PF, Schuster P. 1993. Biopolymers 33:1389–404 [Google Scholar]
  184. Kiga D, Futamura Y, Sakamoto K, Yokoyama S. 1998. Nucleic Acids Res. 26(7):1755–60 [Google Scholar]
  185. Haller AA, Sarnow P. 1997. Proc. Natl. Acad. Sci. USA 94:8521–26 [Google Scholar]
  186. Majerfeld I, Yarus M. 1994. Nat. Struct. Biol. 1:287–92 [Google Scholar]
  187. Famulok M, Szostak JW. 1992. J. Am. Chem. Soc. 114:3990–91 [Google Scholar]
  188. Lorsch JR, Szostak JW. 1994. Biochemistry 33:973–82 [Google Scholar]
  189. Li Y, Geyer R, Sen D. 1996. Biochemistry 35:6911–22 [Google Scholar]
  190. Burgstaller P, Famulok M. 1994. Angew. Chem. Int. Ed. Engl. 33:1084–87 [Google Scholar]
  191. Wallis MG, von Ahsen U, Schroeder R, Famulok M. 1995. Chem. Biol. 2:543–52 [Google Scholar]
  192. Lato SM, Boles AR, Ellington AD. 1995. Chem. Biol. 2:291–303 [Google Scholar]
  193. Wallace ST, Schroeder R. 1998. RNA 4:112–23 [Google Scholar]
  194. Wallis MG, Streicher B, Wank H, von Ahsen U, Clodi E. et al. 1997. Chem. Biol. 4:357–66 [Google Scholar]
  195. Burke DH, Hoffman DC, Brown A, Hansen M, Pardi A, Gold L. 1997. Chem. Biol. 4:833–43 [Google Scholar]
  196. Morris KN, Tarasow TM, Julin CM, Simons SL, Hilvert D, Gold L. 1994. Proc. Natl. Acad. Sci. USA 91:13028–32 [Google Scholar]
  197. Mannironi C, Di Nardo A, Fruscoloni P, Tocchini-Valentini GP. 1997. Biochemistry 36:9726–34 [Google Scholar]
  198. Hofmann H-P, Limmer S, Hornung V, Sprinzl M. 1997. RNA 3:1289–300 [Google Scholar]
  199. Jenne A, Famulok M. 1997. Chem. Biol. 5:23–34 [Google Scholar]
  200. Wecker M, Smith D, Gold L. 1996. RNA 2:982–94 [Google Scholar]
  201. Piccirilli JA, McConnell TS, Zaug AJ, Noller HF, Cech TR. 1992. Science 256:1420–24 [Google Scholar]
  202. Carmi N, Shultz LA, Breaker RR. 1996. Chem. Biol. 3:1039–46 [Google Scholar]
  203. Carmi N, Balkhi SR, Breaker RR. 1998. Proc. Natl. Acad. Sci. USA 95:2233–37 [Google Scholar]
  204. Gesteland RF, Atkins JF. eds 1993. The RNA World. Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press [Google Scholar]
/content/journals/10.1146/annurev.biochem.68.1.611
Loading
/content/journals/10.1146/annurev.biochem.68.1.611
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error