1932

Abstract

Protein glycosylation is widely recognized as a modulator of protein structure, localization, and cell-cell recognition in multicellular systems. Glycoproteins are typically expressed as mixtures of glycoforms, their oligosaccharides being generated by a template-independent biosynthetic process. Investigation of their function has been greatly assisted by sources of homogeneous material. This review summarizes current efforts to obtain homogeneous glycopeptide and glycoprotein materials by a variety of methods that draw from the techniques of recombinant expression, chemical synthesis, enzymatic transformation, and chemoselective ligation. Some of these techniques remove obstacles to glycoprotein synthesis by installing nonnative linkages and other modifications for facilitated assembly. The end purpose of the described approaches is the production of glycosylated materials for experiments relevant to the biological investigation of glycoproteins, although the strategies presented apply to other posttranslational modifications as well.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.biochem.71.110601.135334
2002-07-01
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/biochem/71/1/annurev.biochem.71.110601.135334.html?itemId=/content/journals/10.1146/annurev.biochem.71.110601.135334&mimeType=html&fmt=ahah

Literature Cited

  1. Drickamer K, Taylor ME. 1998. Trends Biochem. Sci. 23:321–24 [Google Scholar]
  2. Varki A, Gagneux P. 1999. Glycobiology 9:747–55 [Google Scholar]
  3. Parekh RB, Dwek RA, Thomas JR, Opdenakker G, Rademacher TW. et al. 1989. Biochemistry 28:7644–62 [Google Scholar]
  4. Int. Hum. Genome Seq. Consort. 2001. Nature 409:860–921 [Google Scholar]
  5. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ. et al. 2001. Science 291:1304–51 [Google Scholar]
  6. Rubin GM, Yandell MD, Wortman JR, Miklos GLG, Nelson CR. et al. 2000. Science 287:2204–15 [Google Scholar]
  7. Fortini M. 2000. Nature 406:357–58 [Google Scholar]
  8. Moloney DJ, Panin VM, Johnston SH, Chen J, Shao L. et al. 2000. Nature 406:369–75 [Google Scholar]
  9. Brückner K, Perez L, Clausen H, Cohen S. 2000. Nature 406:411–15 [Google Scholar]
  10. Munro S, Freeman M. 2000. Curr. Biol. 10:813–20 [Google Scholar]
  11. Rudd PM, Dwek RA. 1997. Crit. Rev. Biochem. Mol. Biol. 32:1–100 [Google Scholar]
  12. Herzner H, Reipen T, Schultz M, Kunz H. 2000. Chem. Rev. 100:4495–537 [Google Scholar]
  13. St. Hilaire PM, Meldal M. 2000. Angew. Chem. Int. Ed. Engl. 39:1162–79 [Google Scholar]
  14. Koeller KM, Wong CH. 2000. Chem. Rev. 1000:4465–93 [Google Scholar]
  15. Marcaurelle LA, Bertozzi CR. 1999. Chem. Eur. J. 5:1384–90 [Google Scholar]
  16. Hang HC, Bertozzi CR. 2001. Acc. Chem. Res. 34:727–36 [Google Scholar]
  17. Shimizu Y, Shaw S. 1993. Nature 366:630–31 [Google Scholar]
  18. Hilkens J, Ligtenberg MJL, Vos HL, Litvinov SV. 1992. Trends Biochem. Sci. 17:359–63 [Google Scholar]
  19. Strous GJ, Dekker J. 1992. Crit. Rev. Biochem. Mol. Biol. 27:57–92 [Google Scholar]
  20. Carraway KL, Hull SR. 1991. Glycobiology 1:131 [Google Scholar]
  21. Hanisch F-G. 2001. Biol. Chem. 382:143–49 [Google Scholar]
  22. Comer FI, Hart GW. 2000. J. Biol. Chem. 275:29179–82 [Google Scholar]
  23. Harris RJ, Spellman MW. 1993. Glycobiology 3:219–24 [Google Scholar]
  24. Hanisch FG, Chai WG, Rosankiewicz JR, Lawson AM, Stoll MS, Feizi T. 1993. Eur. J. Biochem. 217:645–55 [Google Scholar]
  25. Varki A, Cummings RD, Esko J, Freeze H, Hart G, Marth J. eds 1999. Essentials of Glycobiology. Cold Spring Harbor, NY: Cold Spring Harbor Lab [Google Scholar]
  26. Tsuboi S, Fukuda M. 2001. BioEssays 23:46–53 [Google Scholar]
  27. Fong AM, Erickson HP, Zachariah JP, Poon S, Schamberg NJ. et al. 2000. J. Biol. Chem. 275:3781–86 [Google Scholar]
  28. Cyster JG, Shotton DM, Williams AF. 1991. EMBO J. 10:893–902 [Google Scholar]
  29. Li F, Erickson HP, James JA, Moore KL, Cummings RD, McEver RP. 1996. J. Biol. Chem. 271:6342–48 [Google Scholar]
  30. McMaster TJ, Berry M, Corfield AP, Miles MJ. 1999. Biophys. J. 77:533–41 [Google Scholar]
  31. Shogren R, Gerken TA, Jentoft N. 1989. Biochemistry 28:5525–36 [Google Scholar]
  32. Live DH, Williams LJ, Kuduk SD, Schwartz JB, Glunz PW. et al. 1999. Proc. Natl. Acad. Sci. USA 96:3489–93 [Google Scholar]
  33. Andreotti AH, Kahne D. 1993. J. Am. Chem. Soc. 115:3352–53 [Google Scholar]
  34. Huang X, Barchi JJ, Lung F-DT, Roller PP, Nara PL. et al. 1997. Biochemistry 36:10846–56 [Google Scholar]
  35. Liang R, Andreotti AH, Kahne D. 1995. J. Am. Chem. Soc. 117:10395–96 [Google Scholar]
  36. Gerken TA, Butenhof KJ, Shogren R. 1989. Biochemistry 28:5536–43 [Google Scholar]
  37. Paulsen H, Kolár C, Stenzel W. 1978. Chem. Ber. 111:2358–69 [Google Scholar]
  38. Winans KA, King DS, Rao VR, Bertozzi CR. 1999. Biochemistry 38:11700–10 [Google Scholar]
  39. Schwarz JB, Kuduk SD, Chen X-T, Sames D, Glunz PW, Danishefsky SJ. 1999. J. Am. Chem. Soc. 121:2662–73 [Google Scholar]
  40. Winterfeld GA, Schmidt RR. 2001. Angew. Chem. Int. Ed. Engl. 40:2654–57 [Google Scholar]
  41. Mathieux N, Paulsen H, Meldal M, Bock K. 1997. J. Chem. Soc. Perkin Trans. 1 16:2359–68 [Google Scholar]
  42. Meinjohanns E, Meldal M, Schleyer A, Paulsen H, Bock K. 1996. J. Chem. Soc. Perkin Trans. 110:985–93 [Google Scholar]
  43. Glunz PW, Hintermann S, Willams LJ, Schwarz JB, Kuduk SD. et al. 2000. J. Am. Chem. Soc. 122:7273–79 [Google Scholar]
  44. Kuduk SD, Schwarz JB, Chen X-T, Glunz PW, Sames D. et al. 1998. J. Am. Chem. Soc. 120:12474–85 [Google Scholar]
  45. Danishefsky SJ, Allen JR. 2000. Angew. Chem. Int. Ed. 39:837–63 [Google Scholar]
  46. Springer GF. 1984. Science 224:1198–206 [Google Scholar]
  47. Seeberger PH, Haase W-C. 2000. Chem. Rev. 100:4349–93 [Google Scholar]
  48. Plante OJ, Palmacci ER, Seeberger PH. 2001. Science 291:1523–27 [Google Scholar]
  49. Koeller KM, Wong CH. 2000. Glycobiology 10:1157–69 [Google Scholar]
  50. Vestweber D, Blanks JE. 1999. Physiol. Rev. 79:181–213 [Google Scholar]
  51. Yang J, Hirata T, Croce K, Merrill-Skoloff G, Tchernychev B. et al. 1999. J. Exp. Med. 190:1769–82 [Google Scholar]
  52. McEver RP, Cummings RD. 1997. J. Clin. Invest. 100:485–92 [Google Scholar]
  53. Leppanen A, White SP, Helin J, McEver RP, Cummings RD. 2000. J. Biol. Chem. 275:39569–78 [Google Scholar]
  54. Leppanen A, Mehta P, Ouyang Y-B, Ju T, Helin J. et al. 1999. J. Biol. Chem. 274:24838–48 [Google Scholar]
  55. Ouyang Y-B, Lane WS, Moore KL. 1998. Proc. Natl. Acad. Sci. USA 95:2896–901 [Google Scholar]
  56. Somers WS, Tang J, Shaw GD, Camphausen RT. 2000. Cell 103:467–79 [Google Scholar]
  57. Koeller KM, Smith ME, Wong CH. 2000. Bioorg. Med. Chem. 8:1017–25 [Google Scholar]
  58. Koeller KM, Smith ME, Huang R-F, Wong CH. 2000. J. Am. Chem. Soc. 122:4241–42 [Google Scholar]
  59. Lemieux GA, Bertozzi CR. 1998. Trends Biotech. 16:506–13 [Google Scholar]
  60. Marcaurelle LA, Bertozzi CR. 2001. J. Am. Chem. Soc. 123:1587–95 [Google Scholar]
  61. Rodriguez EC, Marcaurelle LA, Bertozzi CR. 1998. J. Org. Chem. 63:7134–35 [Google Scholar]
  62. Marcaurelle LA, Rodriguez EC, Bertozzi CR. 1998. Tetrahedron Lett. 39:8417–20 [Google Scholar]
  63. Marcaurelle LA, Bertozzi CR. 1998. Tetrahedron Lett. 39:7279–82 [Google Scholar]
  64. Rodriguez EC, Winans KA, King DS, Bertozzi CR. 1997. J. Am. Chem. Soc. 119:9905–6 [Google Scholar]
  65. Marcaurelle LA, Shin Y, Bertozzi CR. 2001. Org. Lett. 3:3691–94 [Google Scholar]
  66. Lasky LA, Singer MS, Dowbenko D, Imai Y, Henzel WJ. et al. 1992. Cell 69:927–38 [Google Scholar]
  67. Marcaurelle LA. 2001. Synthesis of glycoproteins and glycopeptide mimetics. PhD thesis. Univ. Calif., Berkeley [Google Scholar]
  68. Marcaurelle LA, Pratt MR, Bertozzi CR. 2002. Synthesis of thioether-linked analogs of the 2,3-STF and MECA-79 antigens: mucin type oligosaccharides associated with cancer and inflammation. Submitted
  69. Yeh J, Hiraoka N, Petryniak B, Nakayama J, Ellies LG. et al. 2001. Cell 105:957–69 [Google Scholar]
  70. Streeter PR, Rouse BT, Butcher EC. 1988. J. Cell Biol. 107:1853–62 [Google Scholar]
  71. Hemmerich S, Butcher EC, Rosen SD. 1994. J. Exp. Med. 180:2219–26 [Google Scholar]
  72. Hanisch FG, Stadie TR, Deutzmann F, Peter-Katalinic J. 1996. Eur. J. Biochem. 236:318–27 [Google Scholar]
  73. Hojo H, Aimoto S. 1991. Bull. Chem. Soc. Jpn. 64:111–17 [Google Scholar]
  74. Marcaurelle LA, Mizoue LS, Wilken J, Oldham L, Kent SBH. et al. 2001. Chem. Eur. J. 7:1129–32 [Google Scholar]
  75. Bulet P, Hegy G, Lambert J, Van Dorsselaer A, Hoffman JA, Hetru C. 1995. Biochemistry 34:7394–400 [Google Scholar]
  76. Backes BJ, Ellman JA. 1999. J. Org. Chem. 64:2322–30 [Google Scholar]
  77. Shin Y, Winans KA, Backes BJ, Kent SBH, Ellman JA, Bertozzi CR. 1999. J. Am. Chem. Soc. 121:11684–89 [Google Scholar]
  78. Noren CJ, Wang JM, Perler FB. 2000. Angew. Chem. Int. Ed. 39:450–66 [Google Scholar]
  79. Deleted in proof
  80. Muir TW, Sondhi D, Cole PA. 1998. Proc. Natl. Acad. Sci. USA 95:6705–10 [Google Scholar]
  81. Muir TW. 2001. Synlett 6:733–40 [Google Scholar]
  82. UMacmillan D, Bertozzi CR. 2000. Tetrahedron 56:9515–25 [Google Scholar]
  83. Macmillan D, Bertozzi CR. 2002. Glycoprotein semi-synthesis: the use of expressed protein ligation and native chemical ligation for the construction of Glycam-1 glycoforms. In preparation
  84. Kornfeld R, Kornfeld S. 1985. Annu. Rev. Biochem. 54:631–64 [Google Scholar]
  85. Lechner J, Wieland F. 1989. Annu. Rev. Biochem. 58:173–94 [Google Scholar]
  86. Helenius A, Aebi M. 2001. Science 291:2364–69 [Google Scholar]
  87. Gavel Y, von Heijne G. 1990. Protein Eng. 3:433–42 [Google Scholar]
  88. Hammond C, Braakman I, Helenius A. 1994. Proc. Natl. Acad. Sci. USA 91:913–17 [Google Scholar]
  89. Huppa JB, Ploegh HL. 1998. Cell 92:145–48 [Google Scholar]
  90. Cannon KS, Helenius A. 1999. J. Biol. Chem. 274:7537–44 [Google Scholar]
  91. DeKoster GT, Robertson AD. 1997. Biochemistry 36:2323–31 [Google Scholar]
  92. Wyss DF, Choi JS, Li J, Knoppers MH, Willis KJ. et al. 1995. Science 269:1273–78 [Google Scholar]
  93. Garcia KC, Degano M, Stanfield RL, Brunmark A, Jackson MR. et al. 1996. Science 274:209–19 [Google Scholar]
  94. Fukuda MN, Sasaki H, Lopez L, Fukuda M. 1989. Blood 73:84–89 [Google Scholar]
  95. Smith PL, Bousfield GR, Kumar S, Fiete D, Baenziger JU. 1993. J. Biol. Chem. 268:795–802 [Google Scholar]
  96. Raju TS, Briggs JB, Chamow SM, Winkler ME, Jones AJS. 2001. Biochemistry 40:8868–76 [Google Scholar]
  97. Weikert S, Papac D, Briggs J, Cowfer D, Tom S. et al. 1999. Nat. Biotechnol. 17:1116–21 [Google Scholar]
  98. Haneda K, Inazu T, Mizuno M, Iguchi R, Yamamoto K. et al. 1998. Bioorg. Med. Chem. Lett. 8:1303–6 [Google Scholar]
  99. O’Connor SE, Pohlmann J, Imperiali B, Saskiawan I, Yamamoto K. 2001. J. Am. Chem. Soc. 123:6187–88 [Google Scholar]
  100. Seifert J, Unverzagt C. 1996. Tetrahedron Lett. 37:6527–30 [Google Scholar]
  101. Unverzagt C. 1997. Carbohydr. Res. 305:423–31 [Google Scholar]
  102. Seifert J, Unverzagt C. 1997. Tetrahedron Lett. 38:7857–60 [Google Scholar]
  103. Unverzagt C. 1996. Angew. Chem. Int. Ed. Engl. 35:2350–53 [Google Scholar]
  104. Unverzagt C. 1997. Tetrahedron Lett. 38:5627–30 [Google Scholar]
  105. Guo ZW, Nakahara Y, Ogawa T. 1997. Bioorg. Med. Chem. 5:1917–24 [Google Scholar]
  106. Guo ZW, Nakahara Y, Ogawa T. 1997. Angew. Chem. Int. Ed. Engl. 36:1464–66 [Google Scholar]
  107. Unverzagt C. 1997. Angew. Chem. Int. Ed. Engl. 36:1989–92 [Google Scholar]
  108. Unverzagt C. 1994. Angew. Chem. Int. Ed. Engl. 33:1102–4 [Google Scholar]
  109. Likhosherstov LM, Novikova OS, Dervitskaya VA, Kochetkov NK. 1986. Carbohydr. Res. 146:C6 [Google Scholar]
  110. Meinjohanns E, Meldal M, Paulsen H, Dwek RA, Bock K. 1998. J. Chem. Soc. Perkin Trans. 1 3:549–60 [Google Scholar]
  111. Live DH, Wang ZG, Iserloh U, Danishefsky SJ. 2001. Org. Lett. 3:851–54 [Google Scholar]
  112. Wang Z-G, Zhang XF, Visser M, Live D, Zatorski A. et al. 2001. Angew. Chem. Int. Ed. Engl. 40:1728–32 [Google Scholar]
  113. Wang Z-G, Zhang XF, Live D, Danishefsky SJ. 2000. Angew. Chem. Int. Ed. Engl. 39:3652–56 [Google Scholar]
  114. Danishefsky SJ, Hu S, Cirillo PF, Eckhardt M, Seeberger PH. 1997. Chem. Eur. J. 3:1617–28 [Google Scholar]
  115. Macmillan D, Bill RM, Sage KA, Fern D, Flitsch SL. 2001. Chem. Biol. 8:133–45 [Google Scholar]
  116. Davis NJ, Flitsch SL. 1991. Tetrahedron Lett. 32:6793–96 [Google Scholar]
  117. Bengtsson M, Broddefalk J, Dahmén J, Henriksson K, Kihlberg J. et al. 1998. Glycoconjugate J. 15:223–31 [Google Scholar]
  118. Dawson PE, Kent SBH. 2000. Annu. Rev. Biochem. 69:923–60 [Google Scholar]
  119. Tolbert TJ, Wong C-H. 2000. J. Am. Chem. Soc. 122:5421–28 [Google Scholar]
  120. Hojo H, Watabe J, Nakahara Y, Ito Y, Nabeshima K, Toole BP. 2001. Tetrahedron Lett. 42:3001–4 [Google Scholar]
  121. McConville MJ, Ferguson MAJ. 1993. Biochem. J. 294:305–24 [Google Scholar]
  122. Ferguson MAJ. 1999. J. Cell. Sci. 112:2799–809 [Google Scholar]
  123. Nosjean O, Briolay A, Roux B. 1997. Biochim. Biophys. Acta 1331:153–86 [Google Scholar]
  124. Simons K, Ikonen E. 1997. Nature 387:569–72 [Google Scholar]
  125. Varma R, Mayor S. 1998. Nature 394:798–801 [Google Scholar]
  126. Friedrichson T, Kurzchalia TV. 1998. Nature 394:802–5 [Google Scholar]
  127. Pralle A, Keller P, Florin E-L, Simons K, Hörber JKH. 2000. J. Cell Biol. 148:997–1007 [Google Scholar]
  128. Dietrich C, Volovyk ZN, Levi M, Thompson NL, Jacobson K. 2001. Proc. Natl. Acad. Sci. USA 98:10642–47 [Google Scholar]
  129. Bromley SK, Burack WR, Johnson KG, Somersalo K, Sims TN. et al. 2001. Annu. Rev. Immunol. 19:375–96 [Google Scholar]
  130. Liao Z, Cimakasky LM, Hampton R, Nguyen DH, Hildreth JEK. 2001. AIDS Res. Hum. Retroviruses 17:1009–19 [Google Scholar]
  131. Dykstra ML, Longneckker R, Pierce SK. 2001. Immunity 14:57–67 [Google Scholar]
  132. Kaneko K, Vey M, Scott M, Pilkuhn S, Cohen FE, Prusiner SB. 1997. Proc. Natl. Acad. Sci. USA 94:2333–38 [Google Scholar]
  133. Campbell AS, Fraser-Reid B. 1995. J. Am. Chem. Soc. 117:10387–88 [Google Scholar]
  134. Mayer TG, Schmidt RR. 1999. Eur. J. Org. Chem. 1153–65 [Google Scholar]
  135. Baeschlin DK, Chaperon AR, Charbonneau V, Green LG, Ley SV. et al. 1998. Angew. Chem. Int. Ed. Engl. 37:3423–28 [Google Scholar]
  136. Schofield L, McConville MJ, Hansen D, Campbell AS, Fraser-Reid B. et al. 1999. Science 283:225–29 [Google Scholar]
  137. Frick W, Bauer A, Bauer J, Wied S, Müller G. 1998. Biochemistry 37:13421–36 [Google Scholar]
  138. Medof ME, Nagarajan S, Tykocinski ML. 1996. FASEB J. 10:574–86 [Google Scholar]
  139. Medof ME, Kinoshita T, Nussenzweig V. 1984. J. Exp. Med. 160:1558–78 [Google Scholar]
  140. Zhang F, Schmidt WG, Hou Y, Williams AF, Jacobson K. 1992. Proc. Natl. Acad. Sci. USA 89:5231–35 [Google Scholar]
  141. Huang J-H, Getty RR, Chisari FV, Fowler P, Greenspan NS, Tykocinski ML. 1994. Immunity 1:607–13 [Google Scholar]
  142. Bader B, Kuhn K, Owen DJ, Waldmann H, Wittinghofer A, Kuhlmann J. 2000. Nature 403:223–26 [Google Scholar]
/content/journals/10.1146/annurev.biochem.71.110601.135334
Loading
/content/journals/10.1146/annurev.biochem.71.110601.135334
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error