1932

Abstract

Robotic technology is enhancing surgery through improved precision, stability, and dexterity. In image-guided procedures, robots use magnetic resonance and computed tomography image data to guide instruments to the treatment site. This requires new algorithms and user interfaces for planning procedures; it also requires sensors for registering the patient’s anatomy with the preoperative image data. Minimally invasive procedures use remotely controlled robots that allow the surgeon to work inside the patient’s body without making large incisions. Specialized mechanical designs and sensing technologies are needed to maximize dexterity under these access constraints. Robots have applications in many surgical specialties. In neurosurgery, image-guided robots can biopsy brain lesions with minimal damage to adjacent tissue. In orthopedic surgery, robots are routinely used to shape the femur to precisely fit prosthetic hip joint replacements. Robotic systems are also under development for closed-chest heart bypass, for microsurgical procedures in ophthalmology, and for surgical training and simulation. Although results from initial clinical experience is positive, issues of clinician acceptance, high capital costs, performance validation, and safety remain to be addressed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.bioeng.1.1.211
1999-08-01
2024-12-05
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.bioeng.1.1.211
Loading
/content/journals/10.1146/annurev.bioeng.1.1.211
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error