1932

Abstract

The treatment of acute liver failure has evolved to the current concept of hybrid bioartificial liver (BAL) support, because wholly artificial systems have not proved efficacious. BAL devices are still in their infancy. The properties that these devices must possess are unclear because of our lack of understanding of the pathophysiology of liver failure. The considerations that attend the development of BAL devices are herein reviewed. These considerations include choice of cellular component, choice of membrane component, and choice of BAL system configuration. Mass transfer efficiency plays a role in the design of BAL devices, but the complexity of the systems renders detailed mass transfer analysis difficult. BAL devices based on hollow-fiber bioreactors currently show the most promise, and available results are reviewed herein. BAL treatment is designed to support patients with acute liver failure until an organ becomes available for transplantation. The results obtained to date, in this relatively young field, point to a bright future. The risks of using xenogeneic treatments have yet to be defined. Finally, the experience gained from the past and current BAL systems can be used as a basis for improvement of future BAL technology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.bioeng.2.1.607
2000-08-01
2024-06-22
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.bioeng.2.1.607
Loading
/content/journals/10.1146/annurev.bioeng.2.1.607
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error