Here I give a brief history of my scientific career, beginning with my early interest in natural history and my introduction to the microscope and the wonderful world of the cell. My studies have focused on chromosomes, nucleoli, and other nuclear structures, with a few forays into the cytoplasm. In each case, I have tried to understand how proteins and nucleic acids are physically organized to give rise to the structures seen under the microscope. I describe how studies in my laboratory on amplified ribosomal RNA genes led to the development of in situ hybridization, a technique that permitted us to localize specific nucleic acid sequences with high precision. My early exposure to the diversity of animals and plants made it seem natural to choose organisms best suited to a particular problem, hence the use of salamanders, frogs, and mice, as well as protozoa, fruit flies, and other invertebrates.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Andrade LEC, Chan EKL, Raska I, Peebles CL, Roos G, Tan EM. 1991. Human autoantibody to a novel protein of the nuclear coiled body: immunological characterization and cDNA cloning of p80-coilin. J. Exp. Med. 173:1407–19 [Google Scholar]
  2. Bellini M, Gall JG. 1998. Coilin can form a complex with the U7 small nuclear ribonucleoprotein. Mol. Biol. Cell 9:2987–3001 [Google Scholar]
  3. Berget SM, Moore C, Sharp PA. 1977. Spliced segments at the 5′ terminus of adenovirus 2 late mRNA. Proc. Natl. Acad. Sci. USA 74:3171–75 [Google Scholar]
  4. Blackburn EH. 1975. Transcription by Escherichia coli RNA polymerase of a single-stranded fragment by bacteriophage ΦX174 DNA 48 residues in length. J. Mol. Biol. 93:367–74 [Google Scholar]
  5. Blackburn EH. 1976. Transcription and sequence analysis of a fragment of bacteriophage ΦX174 DNA. J. Mol. Biol. 107:417–31 [Google Scholar]
  6. Blackburn EH, Gall JG. 1978. A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. J. Mol. Biol. 120:33–53 [Google Scholar]
  7. Brachet J. 1940. La localisation de l'acide thymonucléique pendant l'oogenèse et la maturation chez les amphibiens. Arch. Biol. 51:151–65 [Google Scholar]
  8. Brown DD, Dawid IB. 1968. Specific gene amplification in oocytes. Science 160:272–80 [Google Scholar]
  9. Cajal SRy. 1903. Un sencillo metodo de coloracion seletiva del reticulo protoplasmatico y sus efectos en los diversos organos nerviosos de vertebrados e invertebrados. Trab. Lab. Invest. Biol. (Madrid) 2:129–221 [Google Scholar]
  10. Callan HG. 1954. Recent work on the structure of cell nuclei. Fine Structure of Cells: Symposium of the VIIIth Congress in Cell Biology, Leiden 1954, Int. Union Biol. Sci. Publ., Ser. B89–109 Groningen: Noordhof [Google Scholar]
  11. Callan HG, Gall JG, Murphy C. 1991. Histone genes are located at the sphere loci of Xenopus lampbrush chromosomes. Chromosoma 101:245–51 [Google Scholar]
  12. Callan HG, Lloyd L. 1960. Lampbrush chromosomes of crested newts Triturus cristatus (Laurenti). Philos. Trans. R. Soc. Lond. B. 243:135–219 [Google Scholar]
  13. Callan HG, Macgregor HC. 1958. Action of deoxyribonuclease on lampbrush chromosomes. Nature 181:1479–80 [Google Scholar]
  14. Charret R. 1969. L'ADN nucléolaire chez Tetrahymena pyriformis: chronologie de sa réplication. Exp. Cell Res. 54:353–61 [Google Scholar]
  15. Chow LT, Gelinas RE, Broker TR, Roberts RJ. 1977. An amazing sequence arrangement at the 5′ ends of adenovirus 2 messenger RNA. Cell 12:1–8 [Google Scholar]
  16. Coons AH, Kaplan MH. 1950. Localization of antigen in tissue cells; improvements in a method for the detection of antigen by means of fluorescent antibody. J. Exp. Med. 91:1–13 [Google Scholar]
  17. Duryee WR. 1937. Isolation of nuclei and non-mitotic chromosome pairs from frog eggs. Arch. exp. Zellforsch. 19:171–76 [Google Scholar]
  18. Duryee WR. 1941. The chromosomes of the amphibian nucleus. Cytology, Genetics, and Evolution. Univ. Penn. Bicentennial Conf.129–41 Philadelphia, PA: Univ. Penn [Google Scholar]
  19. Ebstein BS. 1967. Tritiated actinomycin D as a cytochemical label for small amounts of DNA. J. Cell Biol. 35:709–13 [Google Scholar]
  20. Eckhardt RA, Gall JG. 1971. Satellite DNA associated with heterochromatin in Rhynchosciara. Chromosoma 32:407–27 [Google Scholar]
  21. Endow SA, Polan ML, Gall JG. 1975. Satellite DNA sequences of Drosophila melanogaster. J. Mol. Biol. 96:665–92 [Google Scholar]
  22. Gall JG. 1954a. Lampbrush chromosomes from oocyte nuclei of the newt. J. Morphol. 94:283–352 [Google Scholar]
  23. Gall JG. 1954b. Observations on the nuclear membrane with the electron microscope. Exp. Cell Res. 7:197–200 [Google Scholar]
  24. Gall JG. 1955. Problems of structure and function in the amphibian oocyte nucleus. Fibrous Proteins and Their Biological Significance. Symp. Soc. Exp. Biol. No. 9358–70 London: Soc. Exp. Biol. [Google Scholar]
  25. Gall JG. 1956. On the submicroscopic structure of chromosomes. Mutation. Brookhaven Symp. Biol. No. 817–32 Upton, NY: Brookhaven Natl. Lab. [Google Scholar]
  26. Gall JG. 1958. Chromosomal differentiation. A Symposium on the Chemical Basis of Development WD McElroy, B Glass 103–35 Baltimore, MD: Johns Hopkins [Google Scholar]
  27. Gall JG. 1959. Macronuclear duplication in the ciliated protozoan Euplotes. J. Biophys. Biochem. Cytol. 5:295–308 [Google Scholar]
  28. Gall JG. 1961. Centriole replication. A study of spermatogenesis in the snail Viviparus. J. Biophys. Biochem. Cytol. 10:163–93 [Google Scholar]
  29. Gall JG. 1963. Kinetics of deoxyribonuclease action on chromosomes. Nature 198:36–38 [Google Scholar]
  30. Gall JG. 1966a. Nuclear RNA of the salamander oocyte. The Nucleolus—Its Structure and Function. National Cancer Institute Monograph 23 WS Vincent, OL Miller, ME Drets, FA Saez 475–88 Bethesda, MD: Natl. Cancer Inst. [Google Scholar]
  31. Gall JG. 1966b. Techniques for the study of lampbrush chromosomes. Methods in Cell Physiology37–60 New York: Academic [Google Scholar]
  32. Gall JG. 1967. Octagonal nuclear pores. J. Cell Biol. 32:391–99 [Google Scholar]
  33. Gall JG. 1968. Differential synthesis of the genes for ribosomal RNA during amphibian oogenesis. Proc. Natl. Acad. Sci. USA 60:553–60 [Google Scholar]
  34. Gall JG. 1974. Free ribosomal RNA genes in the macronucleus of Tetrahymena. Proc. Natl. Acad. Sci. USA 71:3078–81 [Google Scholar]
  35. Gall JG, Atherton DD. 1974. Satellite DNA sequences in Drosophila virilis. J. Mol. Biol. 85:633–64 [Google Scholar]
  36. Gall JG, Bellini M, Wu Z, Murphy C. 1999. Assembly of the nuclear transcription and processing machinery: Cajal bodies (coiled bodies) and transcriptosomes. Mol. Biol. Cell 10:4385–402 [Google Scholar]
  37. Gall JG, Callan HG. 1962. H3 Uridine incorporation in lampbrush chromosomes. Proc. Natl. Acad. Sci. USA 48:562–70 [Google Scholar]
  38. Gall JG, Cohen EH, Polan ML. 1971. Repetitive DNA sequences in Drosophila. Chromosoma 33:319–44 [Google Scholar]
  39. Gall JG, Pardue ML. 1969. Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc. Natl. Acad. Sci. USA 63:378–83 [Google Scholar]
  40. Gall JG, Pardue ML. 1971. Nucleic acid hybridization in cytological preparations. Methods in Enzymology 21 L Grossman, K Moldave Nucleic Acids, Pt. D470–80 New York: Academic [Google Scholar]
  41. Gall JG, Stephenson EC, Erba HP, Diaz MO, Barsacchi-Pilone G. 1981. Histone genes are located at the sphere loci of newt lampbrush chromosomes. Chromosoma 84:159–71 [Google Scholar]
  42. Gerbi SA. 1971. Localization and characterization of the ribosomal RNA cistrons in Sciara coprophila. J. Mol. Biol. 58:499–511 [Google Scholar]
  43. Greider CW, Blackburn EH. 1987. The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell 51:887–98 [Google Scholar]
  44. Karrer KM, Gall JG. 1976. The macronuclear ribosomal DNA of Tetrahymena pyriformis is a palindrome. J. Mol. Biol. 104:421–53 [Google Scholar]
  45. Liu J-L, Wu Z, Nizami Z, Deryusheva S, Rajendra TK. et al. 2009. Coilin is essential for Cajal body organization in Drosophila melanogaster. Mol. Biol. Cell 20:1661–70 [Google Scholar]
  46. Liu JL, Murphy C, Buszczak M, Clatterbuck S, Goodman R, Gall JG. 2006. The Drosophila melanogaster Cajal body. J. Cell Biol. 172:875–84 [Google Scholar]
  47. McClintock B. 1934. The relation of a particular chromosomal element to the development of the nucleoli in Zea mays. Z. Zellforsch. mikrosk. Anat. 21:294–328 [Google Scholar]
  48. Meselson M, Stahl FW. 1958. The replication of DNA in Escherichia coli. Proc. Natl. Acad. Sci. USA 44:671–82 [Google Scholar]
  49. Miller OL. 1966. Structure and composition of peripheral nucleoli of salamander oocytes. International Symposium on The Nucleolus—Its Structure and Function WS Vincent, OL Miller, ME Drets, FA Saez 53–66 Bethesda, MD: Natl. Cancer Inst. [Google Scholar]
  50. Mizukami I, Gall JG. 1966. Centriole replication II. Sperm formation in the fern, Marsilea, and the cycad, Zamia. J. Cell Biol. 29:97–111 [Google Scholar]
  51. Painter TS, Taylor AN. 1942. Nucleic acid storage in the toad's egg. Proc. Natl. Acad. Sci. USA 28:311–17 [Google Scholar]
  52. Pardue ML, Gall JG. 1969. Molecular hybridization of radioactive DNA to the DNA of cytological preparations. Proc. Natl. Acad. Sci. USA 64:600–4 [Google Scholar]
  53. Pardue ML, Gall JG. 1970. Chromosomal localization of mouse satellite DNA. Science 168:1356–58 [Google Scholar]
  54. Pardue ML, Gall JG. 1972. Molecular cytogenetics. Molecular Genetics and Developmental Biology M Sussman 65–99 Englewood Cliffs, NJ: Prentice-Hall [Google Scholar]
  55. Pardue ML, Gerbi SA, Eckhardt RA, Gall JG. 1970. Cytological localization of DNA complementary to ribosomal RNA in polytene chromosomes of Diptera. Chromosoma 29:268–90 [Google Scholar]
  56. Peacock WJ. 1965. Chromosome replication. International Symposium on Genes and Chromosomes—Structure and Function JI Valencia, RF Grell Natl. Cancer Inst. Monogr. 18101–31 Bethesda, MD: Natl. Cancer Inst. [Google Scholar]
  57. Perry RP. 1962. The cellular sites of synthesis of ribosomal and 4S RNA. Proc. Natl. Acad. Sci. USA 48:2179–86 [Google Scholar]
  58. Raska I, Andrade LEC, Ochs RL, Chan EKL, Chang C-M. et al. 1991. Immunological and ultrastructural studies of the nuclear coiled body with autoimmune antibodies. Exp. Cell Res. 195:27–37 [Google Scholar]
  59. Ritossa FM, Spiegelman S. 1965. Localization of DNA complementary to ribosomal RNA in the nucleolus organizer region of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 53:737–45 [Google Scholar]
  60. Roth MB, Gall JG. 1987. Monoclonal antibodies that recognize transcription unit proteins on newt lampbrush chromosomes. J. Cell Biol. 105:1047–54 [Google Scholar]
  61. Rückert J. 1892. Zur Entwickelungsgeschichte des Ovarialeies bei Selachiern. Anat. Anz. 7:107–58 [Google Scholar]
  62. Szostak JW, Blackburn EH. 1982. Cloning yeast telomeres on linear plasmid vectors. Cell 29:245–55 [Google Scholar]
  63. Taylor JH, Woods PS, Hughes WL. 1957. The organization and duplication of chromosomes as revealed by autoradiographic studies using tritium-labeled thymidine. Proc. Natl. Acad. Sci. USA 43:122–28 [Google Scholar]
  64. Tuma RS, Stolk JA, Roth MB. 1993. Identification and characterization of a sphere organelle protein. J. Cell Biol. 122:767–73 [Google Scholar]
  65. Waddington CH. 1939. An Introduction to Modern Genetics New York: Macmillan441pp. [Google Scholar]
  66. Wilson EB. 1925. The Cell in Development and Heredity New York: Macmillan1232pp. [Google Scholar]
  67. Wu C-HH, Gall JG. 1993. U7 small nuclear RNA in C snurposomes of the Xenopus germinal vesicle. Proc. Natl. Acad. Sci. USA 90:6257–59 [Google Scholar]
  68. Wu Z, Murphy C, Callan HG, Gall JG. 1991. Small nuclear ribonucleoproteins and heterogeneous nuclear ribonucleoproteins in the amphibian germinal vesicle: loops, spheres, and snurposomes. J. Cell Biol. 113:465–83 [Google Scholar]
  69. Wu Z, Murphy C, Gall JG. 1994. Human p80-coilin is targeted to sphere organelles in the amphibian germinal vesicle. Mol. Biol. Cell 5:1119–27 [Google Scholar]
  70. Zaug AJ, Cech TR. 1980. In vitro splicing of the ribosomal RNA precursor in nuclei of Tetrahymena. Cell 19:331–38 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error