1932

Abstract

In this review I describe the several stages of my research career, all of which were driven by a desire to understand the basic mechanisms responsible for the complex and beautiful organization of the eukaryotic cell. I was originally trained as an electron microscopist in Argentina, and my first major contribution was the introduction of glutaraldehyde as a fixative that preserved the fine structure of cells, which opened the way for cytochemical studies at the EM level. My subsequent work on membrane-bound ribosomes illuminated the process of cotranslational translocation of polypeptides across the ER membrane and led to the formulation, with Gunter Blobel, of the signal hypothesis. My later studies with many talented colleagues contributed to an understanding of ER structure and function and aspects of the mechanisms that generate and maintain the polarity of epithelial cells. For this work my laboratory introduced the now widely adopted Madin-Darby canine kidney (MDCK) cell line, and demonstrated the polarized budding of envelope viruses from those cells, providing a powerful new system that further advanced the field of protein traffic.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.cellbio.21.020904.151711
2005-11-10
2024-10-14
Loading full text...

Full text loading...

/deliver/fulltext/cb/21/1/annurev.cellbio.21.020904.151711.html?itemId=/content/journals/10.1146/annurev.cellbio.21.020904.151711&mimeType=html&fmt=ahah

Literature Cited

  1. Adelman MR, Blobel G, Sabatini DD. 1973a. An improved cell fractionation procedure for the preparation of rat liver membrane-bound ribosomes. J. Cell Biol. 56:191–205 [Google Scholar]
  2. Adelman MR, Sabatini DD, Blobel G. 1973b. Ribosome-membrane interaction. Nondestructive disassembly of rat liver rough microsomes into ribosomal and membranous components J. Cell Biol. 56:206–29 [Google Scholar]
  3. Bar-Nun S, Kreibich G, Adesnik M, Alterman L, Negishi M, Sabatini DD. 1980. Synthesis and insertion of cytochrome P-450 into endoplasmic reticulum membranes. Proc. Natl. Acad. Sci. USA 77:965–69 [Google Scholar]
  4. Beaufay H, De Duve C, Novikoff AB. 1956. Electron microscopy of lysosome rich fractions from rat liver. J. Biophys. Biochem. Cytol. 2:179–84 [Google Scholar]
  5. Beckmann R, Bubeck D, Grassucci R, Penczek P, Verschoor A. et al. 1997. Alignment of conduits for the nascent polypeptide chain in the ribosome-Sec61 complex. Science 278:2123–26 [Google Scholar]
  6. Bernstein HD, Poritz MA, Strub K, Hoben PJ, Brenner S, Walter P. 1989. Model for signal sequence recognition from amino-acid sequence of 54 K subunit of signal recognition particle. Nature 340:482–86 [Google Scholar]
  7. Blobel G. 1980. Intracellular protein topogenesis. Proc. Natl. Acad. Sci. USA 77:1496–500 [Google Scholar]
  8. Blobel G, Dobberstein B. 1975a. Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma J. Cell Biol. 67:835–51 [Google Scholar]
  9. Blobel G, Dobberstein B. 1975b. Transfer of proteins across membranes. II. Reconstitution of functional rough microsomes from heterologous components J. Cell Biol. 67:852–62 [Google Scholar]
  10. Blobel G, Sabatini D. 1971. Dissociation of mammalian polyribosomes into subunits by puromycin. Proc. Natl. Acad. Sci. USA 68:390–94 [Google Scholar]
  11. Blobel G, Sabatini DD. 1970. Controlled proteolysis of nascent polypeptides in rat liver cell fractions. I. Location of the polypeptides within ribosomes J. Cell Biol. 45:130–45 [Google Scholar]
  12. Borgese D, Blobel G, Sabatini DD. 1973. In vitro exchange of ribosomal subunits between free and membrane-bound ribosomes. J. Mol. Biol. 74:415–38 [Google Scholar]
  13. Borgese N, Mok W, Kreibich G, Sabatini DD. 1974. Ribosomal-membrane interaction: in vitro binding of ribosomes to microsomal membranes. J. Mol. Biol. 88:559–80 [Google Scholar]
  14. Boulan ER, Pendergast M. 1980. Polarized distribution of viral envelope proteins in the plasma membrane of infected epithelial cells. Cell 20:45–54 [Google Scholar]
  15. Byers B. 1967. Structure and formation of ribosome crystals in hypothermic chick embryo cells. J. Mol. Biol. 26:155–67 [Google Scholar]
  16. Cereijido M, Robbins ES, Dolan WJ, Rotunno CA, Sabatini DD. 1978a. Polarized monolayers formed by epithelial cells on a permeable and translucent support. J. Cell Biol. 77:853–80 [Google Scholar]
  17. Cereijido M, Rotunno CA, Robbins ES, Sabatini DD. 1978b. Polarized epithelial membranes produced in vitro. In Membrane Transport Processes pp. 433–61 New York: Raven [Google Scholar]
  18. Chyn TL, Martonosi AN, Morimoto T, Sabatini DD. 1979. In vitro synthesis of the Ca2+ transport ATPase by ribosomes bound to sarcoplasmic reticulum membranes. Proc. Natl. Acad. Sci. USA 76:1241–45 [Google Scholar]
  19. Colman DR, Kreibich G, Frey AB, Sabatini DD. 1982. Synthesis and incorporation of myelin polypeptides into CNS myelin. J. Cell Biol. 95:598–608 [Google Scholar]
  20. Crowley KS, Liao S, Worrell VE, Reinhart GD, Johnson AE. 1994. Secretory proteins move through the endoplasmic reticulum membrane via an aqueous, gated pore. Cell 78:461–71 [Google Scholar]
  21. Croze E, Ivanov IE, Kreibich G, Adesnik M, Sabatini DD, Rosenfeld MG. 1989. Endolyn-78, a membrane glycoprotein present in morphologically diverse components of the endosomal and lysosomal compartments: implications for lysosome biogenesis. J. Cell Biol. 108:1597–613 [Google Scholar]
  22. Davis CG, van Driel IR, Russell DW, Brown MS, Goldstein JL. 1987. The low density lipoprotein receptor. Identification of amino acids in cytoplasmic domain required for rapid endocytosis J. Biol. Chem. 262:4075–82 [Google Scholar]
  23. De Robertis E, Sabatini D. 1958. Mitochondrial changes in the adrenocortex of normal hamsters. J. Biophys. Biochem. Cytol. 4:667–68 [Google Scholar]
  24. De Robertis ED, Sabatini DD. 1960. Submicroscopic analysis of the secretory process in the adrenal medulla. Fed. Proc. 19:(Suppl. 5)70–78 [Google Scholar]
  25. Deshaies RJ, Schekman R. 1987. A yeast mutant defective at an early stage in import of secretory protein precursors into the endoplasmic reticulum. J. Cell Biol. 105:633–45 [Google Scholar]
  26. Dintzis HM. 1961. Assembly of the peptide chains of hemoglobin. Proc. Natl. Acad. Sci. USA 47:247–61 [Google Scholar]
  27. Ernster L, Siekevitz P, Palade GE. 1962. Enzyme-structure relationships in the endoplasmic reticulum of rat liver. A morphological and biochemical study J. Cell Biol. 15:541–62 [Google Scholar]
  28. Farquhar MG, Palade GE. 1963. Junctional complexes in various epithelia. J. Cell Biol. 17:375–412 [Google Scholar]
  29. Fieser LF, Fieser M. 1956. Organic Chemistry Boston: Reinhold [Google Scholar]
  30. Finidori J, Rizzolo L, Gonzalez A, Kreibich G, Adesnik M, Sabatini DD. 1987. The influenza hemagglutinin insertion signal is not cleaved and does not halt translocation when presented to the endoplasmic reticulum membrane as part of a translocating polypeptide. J. Cell Biol. 104:1705–14 [Google Scholar]
  31. Gilbert W. 1963. Polypeptide synthesis in Escherichia coli. II. The polypeptide chain and S-RNA. J. Mol. Biol. 6:389–403 [Google Scholar]
  32. Gilmore R, Blobel G, Walter P. 1982a. Protein translocation across the endoplasmic reticulum. I. Detection in the microsomal membrane of a receptor for the signal recognition particle J. Cell Biol. 95:463–69 [Google Scholar]
  33. Gilmore R, Walter P, Blobel G. 1982b. Protein translocation across the endoplasmic reticulum. II. Isolation and characterization of the signal recognition particle receptor J. Cell Biol. 95:470–77 [Google Scholar]
  34. Gonzalez A, Rizzolo L, Rindler M, Adesnik M, Sabatini DD, Gottlieb T. 1987. Nonpolarized secretion of truncated forms of the influenza hemagglutinin and the vesicular stomatitus virus G protein from MDCK cells. Proc. Natl. Acad. Sci. USA 84:3738–42 [Google Scholar]
  35. Gorlich D, Prehn S, Hartmann E, Kalies KU, Rapoport TA. 1992. A mammalian homolog of SEC61p and SECYp is associated with ribosomes and nascent polypeptides during translocation. Cell 71:489–503 [Google Scholar]
  36. Gorlich D, Rapoport TA. 1993. Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane. Cell 75:615–30 [Google Scholar]
  37. Gottlieb TA, Gonzalez A, Rizzolo L, Rindler MJ, Adesnik M, Sabatini DD. 1986. Sorting and endocytosis of viral glycoproteins in transfected polarized epithelial cells. J. Cell Biol. 102:1242–55 [Google Scholar]
  38. Gottlieb TA, Ivanov IE, Adesnik M, Sabatini DD. 1993. Actin microfilaments play a critical role in endocytosis at the apical but not the basolateral surface of polarized epithelial cells. J. Cell Biol. 120:695–710 [Google Scholar]
  39. Gravotta D, Adesnik M, Sabatini DD. 1990. Transport of influenza HA from the trans-Golgi network to the apical surface of MDCK cells permeabilized in their basolateral plasma membranes: energy dependence and involvement of GTP-binding proteins. J. Cell Biol. 111:2893–908 [Google Scholar]
  40. Griepp EB, Dolan WJ, Robbins ES, Sabatini DD. 1983. Participation of plasma membrane proteins in the formation of tight junctions by cultured epithelial cells. J. Cell Biol. 96:693–702 [Google Scholar]
  41. Harnik-Ort V, Prakash K, Marcantonio E, Colman DR, Rosenfeld MG. et al. 1987. Isolation and characterization of cDNA clones for rat ribophorin I: complete coding sequence and in vitro synthesis and insertion of the encoded product into endoplasmic reticulum membranes. J. Cell Biol. 104:855–63 [Google Scholar]
  42. Ito A, Sato R. 1969. Proteolytic microdissection of smooth-surfaced vesicles of liver microsomes. J. Cell Biol. 40:179–89 [Google Scholar]
  43. Ivanov IE, Sabatini DD. 1981. Surface features and handedness of a model for the eukaryotic small ribosomal subunit. J. Ultrastruct. Res. 76:263–76 [Google Scholar]
  44. Jacob F, Monod J. 1961. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3:318–56 [Google Scholar]
  45. Katz FN, Rothman JE, Knipe DM, Lodish HF. 1977. Membrane assembly: synthesis and intracellular processing of the vesicular stomatitis viral glycoprotein. J. Supramol. Struct. 7:353–70 [Google Scholar]
  46. Kelleher DJ, Kreibich G, Gilmore R. 1992. Oligosaccharyltransferase activity is associated with a protein complex composed of ribophorins I and II and a 48 kd protein. Cell 69:55–65 [Google Scholar]
  47. Kemper B, Habener JF, Mulligan RC, Potts JT Jr, Rich A. 1974. Pre-proparathyroid hormone: a direct translation product of parathyroid messenger RNA. Proc. Natl. Acad. Sci. USA 71:3731–35 [Google Scholar]
  48. Kreibich G, Debey P, Sabatini DD. 1973. Selective release of content from microsomal vesicles without membrane disassembly. I. Permeability changes induced by low detergent concentrations J. Cell Biol. 58:436–62 [Google Scholar]
  49. Kreibich G, Freienstein CM, Pereyra BN, Ulrich BL, Sabatini DD. 1978a. Proteins of rough microsomal membranes related to ribosome binding. II. Cross-linking of bound ribosomes to specific membrane proteins exposed at the binding sites J. Cell Biol. 77:488–506 [Google Scholar]
  50. Kreibich G, Hubbard AL, Sabatini DD. 1974. On the spatial arrangememt of proteins in microsomal membranes from rat liver. J. Cell Biol. 60:616–27 [Google Scholar]
  51. Kreibich G, Ojakian G, Rodriguez-Boulan E, Sabatini DD. 1982. Recovery of ribophorins and ribosomes in “inverted rough” vesicles derived from rat liver rough microsomes. J. Cell Biol. 93:111–21 [Google Scholar]
  52. Kreibich G, Sabatini DD. 1974. Selective release of content from microsomal vesicles without membrane disassembly. II. Electrophoretic and immunological characterization of microsomal subfractions J. Cell Biol. 61:789–807 [Google Scholar]
  53. Kreibich G, Ulrich BL, Sabatini DD. 1978b. Proteins of rough microsomal membranes related to ribosome binding. I. Identification of ribophorins I and II, membrane proteins characteristic of rough microsomes J. Cell Biol. 77:464–87 [Google Scholar]
  54. Kruppa J, Sabatini DD. 1977. Release of poly A+ messenger RNA from rat liver rough microsomes upon disassembly of bound polysomes. J. Cell Biol. 74:414–27 [Google Scholar]
  55. Lande MA, Adesnik M, Sumida M, Tashiro Y, Sabatini DD. 1975. Direct association of messenger RNA with microsomal membranes in human diploid fibroblasts. J. Cell Biol. 65:513–28 [Google Scholar]
  56. Lasansky A, Sabatini DD. 1957. Distribution of sulfhydryl and disulfide groups in the neurohypophysis and hypothalamus of the toad. Rev. Soc. Argent. Biol. 33:177–82 [Google Scholar]
  57. Ledbetter MC, Porter KR. 1963. A “microtubule” in plant cell fine structure. J. Cell Biol. 19:239–50 [Google Scholar]
  58. Leighton J, Estes LW, Mansukhani S, Brada Z. 1970. A cell line derived from normal dog kidney (MDCK) exhibiting qualities of papillary adenocarcinoma and of renal tubular epithelium. Cancer 26:1022–28 [Google Scholar]
  59. Lewis JA, Sabatini DD. 1977. Accessibility of proteins in rat liver-free and membrane-bound ribosomes to lactoperoxidase-catalyzed iodination. J. Biol. Chem. 252:5547–55 [Google Scholar]
  60. Lilley BN, Ploegh HL. 2004. A membrane protein required for dislocation of misfolded proteins from the ER. Nature 429:834–40 [Google Scholar]
  61. Mach B, Faust C, Vassalli P. 1973. Purification of 14S messenger RNA of immunoglobulin light chain that codes for a possible light-chain precursor. Proc. Natl. Acad. Sci. USA 70:451–55 [Google Scholar]
  62. Malkin LI, Rich A. 1967. Partial resistance of nascent polypeptide chains to proteolytic digestion due to ribosomal shielding. J. Mol. Biol. 26:329–46 [Google Scholar]
  63. Marcantonio EE, Grebenau RC, Sabatini DD, Kreibich G. 1982. Identification of ribophorins in rough microsomal membranes from different organs of several species. Eur. J. Biochem. 124:217–22 [Google Scholar]
  64. Mayer A, Ivanov IE, Gravotta D, Adesnik M, Sabatini DD. 1996. Cell-free reconstitution of the transport of viral glycoproteins from the TGN to the basolateral plasma membrane of MDCK cells. J. Cell Sci. 109:(Pt 7)1667–76 [Google Scholar]
  65. McQuillen K, Roberts RB, Britten RJ. 1959. Synthesis of nascent protein by ribosomes in Escherichia coli. Proc. Natl. Acad. Sci. USA 45:1437–47 [Google Scholar]
  66. Mentaberry A, Adesnik M, Atchison M, Norgard EM, Alvarez F. et al. 1986. Small basic proteins of myelin from central and peripheral nervous systems are encoded by the same gene. Proc. Natl. Acad. Sci. USA 83:1111–14 [Google Scholar]
  67. Meyer DI, Krause E, Dobberstein B. 1982. Secretory protein translocation across membranes—the role of the “docking protein.”. Nature 297:647–50 [Google Scholar]
  68. Miller JD, Tajima S, Lauffer L, Walter P. 1995. The beta subunit of the signal recognition particle receptor is a transmembrane GTPase that anchors the alpha subunit, a peripheral membrane GTPase, to the endoplasmic reticulum membrane. J. Cell Biol. 128:273–82 [Google Scholar]
  69. Milstein C, Brownlee GG, Harrison TM, Mathews MB. 1972. A possible precursor of immunoglobulin light chains. Nat. New Biol. 239:117–20 [Google Scholar]
  70. Misfeldt DS, Hamamoto ST, Pitelka DR. 1976. Transepithelial transport in cell culture. Proc. Natl. Acad. Sci. USA 73:1212–16 [Google Scholar]
  71. Monier S, Van Luc P, Kreibich G, Sabatini DD, Adesnik M. 1988. Signals for the incorporation and orientation of cytochrome P450 in the endoplasmic reticulum membrane. J. Cell Biol. 107:457–70 [Google Scholar]
  72. Morimoto T, Blobel G, Sabatini DD. 1972a. Ribosome crystallization in chicken embryos. I. Isolation, characterization, and in vitro activity of ribosome tetramers J. Cell Biol. 52:338–54 [Google Scholar]
  73. Morimoto T, Blobel G, Sabatini DD. 1972b. Ribosome crystallization in chicken embryos. II. Conditions for the formation of ribosome tetramers in vitro J. Cell Biol. 52:355–66 [Google Scholar]
  74. Musch A, Wiedmann M, Rapoport TA. 1992. Yeast Sec proteins interact with polypeptides traversing the endoplasmic reticulum membrane. Cell 69:343–52 [Google Scholar]
  75. Nishimura Y, Rosenfeld MG, Kreibich G, Gubler U, Sabatini DD. et al. 1986. Nucleotide sequence of rat preputial gland beta-glucuronidase cDNA and in vitro insertion of its encoded polypeptide into microsomal membranes. Proc. Natl. Acad. Sci. USA 83:7292–96 [Google Scholar]
  76. Nonomura Y, Blobel G, Sabatini D. 1971. Structure of liver ribosomes studied by negative staining. J. Mol. Biol. 60:303–23 [Google Scholar]
  77. Novikoff AB. 1956. Electron microscopy: cytology of cell fractions. Science 124:969–72 [Google Scholar]
  78. Ojakian GK, Kreibich G, Sabatini DD. 1977. Mobility of ribosomes bound to microsomal membranes. A freeze-etch and thin-section electron microscope study of the structure and fluidity of the rough endoplasmic reticulum J. Cell Biol. 72:530–51 [Google Scholar]
  79. Okada Y, Frey AB, Guenthner TM, Oesch F, Sabatini DD, Kreibich G. 1982. Studies on the biosynthesis of microsomal membrane proteins. Site of synthesis and mode of insertion of cytochrome b5, cytochrome b5 reductase, cytochrome P-450 reductase and epoxide hydrolase Eur. J. Biochem. 122:393–402 [Google Scholar]
  80. Oliver J, Jungnickel B, Gorlich D, Rapoport T, High S. 1995. The Sec61 complex is essential for the insertion of proteins into the membrane of the endoplasmic reticulum. FEBS Lett. 362:126–30 [Google Scholar]
  81. Omura T, Siekevitz P, Palade GE. 1967. Turnover of constituents of the endoplasmic reticulum membranes of rat hepatocytes. J. Biol. Chem. 242:2389–96 [Google Scholar]
  82. Painter RG, Tokuyasu KT, Singer SJ. 1973. Immunoferritin localization of intracellular antigens: the use of ultracryotomy to obtain ultrathin sections suitable for direct immunoferritin staining. Proc. Natl. Acad. Sci. USA 70:1649–53 [Google Scholar]
  83. Palade G. 1975. Intracellular aspects of the process of protein synthesis. Science 189:347–58 [Google Scholar]
  84. Palade GE. 1952. A study of fixation for electron microscopy. J. Exp. Med. 95:285–98 [Google Scholar]
  85. Palade GE. 1953. A small particulate component of the cytoplasm. J. Appl. Phys. 24:1419 (Abstr.) [Google Scholar]
  86. Palade GE. 1955. A small particulate component of the cytoplasm. J. Biophys. Biochem. Cytol. 1:59–68 [Google Scholar]
  87. Palade GE, Siekevitz P, Caro LG. 1961. Structure, chemistry and function of the pancreatic exocrine cell. In Ciba Foundation Symposium on the The Exocrine Pancreas pp. 23–55 Boston/New York: Little Brown [Google Scholar]
  88. Petermann ML, Pavlovec A. 1969. Effects of magnesium and formaldehyde on the sedimentation behavior of rat liver ribosomes. Biopolymers 7:73–81 [Google Scholar]
  89. Porter KR. 1965. Cytoplasmic microtubules and their functions. In Ciba Foundation Symposium, Principles of Biomolecular Organization ed. GEW Wolstenholme, M O'Connor pp. 308–45 Boston: Little [Google Scholar]
  90. Redman CM. 1967. Studies on the transfer of incomplete polypeptide chains across rat liver microsomal membranes in vitro. J. Biol. Chem. 242:761–68 [Google Scholar]
  91. Redman CM, Sabatini DD. 1966. Vectorial discharge of peptides released by puromycin from attached ribosomes. Proc. Natl. Acad. Sci. USA 56:608–15 [Google Scholar]
  92. Redman CM, Siekevitz P, Palade GE. 1966. Synthesis and transfer of amylase in pigeon pancreatic micromosomes. J. Biol. Chem. 241:1150–58 [Google Scholar]
  93. Rindler MJ, Ivanov IE, Plesken H, Rodriguez-Boulan E, Sabatini DD. 1984. Viral glycoproteins destined for apical or basolateral plasma membrane domains traverse the same Golgi apparatus during their intracellular transport in doubly infected Madin-Darby canine kidney cells. J. Cell Biol. 98:1304–19 [Google Scholar]
  94. Rindler MJ, Ivanov IE, Plesken H, Sabatini DD. 1985. Polarized delivery of viral glycoproteins to the apical and basolateral plasma membranes of Madin-Darby canine kidney cells infected with temperature-sensitive viruses. J. Cell Biol. 100:136–51 [Google Scholar]
  95. Rindler MJ, Ivanov IE, Sabatini DD. 1987. Microtubule-acting drugs lead to the nonpolarized delivery of the influenza hemagglutinin to the cell surface of polarized Madin-Darby canine kidney cells. J. Cell Biol. 104:231–41 [Google Scholar]
  96. Rizzolo LJ, Finidori J, Gonzalez A, Arpin M, Ivanov IE. et al. 1985. Biosynthesis and intracellular sorting of growth hormone-viral envelope glycoprotein hybrids. J. Cell Biol. 101:1351–62 [Google Scholar]
  97. Rodriguez Boulan E, Sabatini DD, Pereyra BN, Kreibich G. 1978. Spatial orientation of glycoproteins in membranes of rat liver rough microsomes. II. Transmembrane disposition and characterization of glycoproteins J. Cell Biol. 78:894–909 [Google Scholar]
  98. Rodriguez-Boulan E, Paskiet KT, Sabatini DD. 1983. Assembly of enveloped viruses in Madin-Darby canine kidney cells: polarized budding from single attached cells and from clusters of cells in suspension. J. Cell Biol. 96:866–74 [Google Scholar]
  99. Rodriguez-Boulan ER, Sabatini DD. 1978. Asymmetric budding of viruses in epithelial monlayers: a model system for study of epithelial polarity. Proc. Natl. Acad. Sci. USA 75:5071–75 [Google Scholar]
  100. Rosenfeld MG, Kreibich G, Popov D, Kato K, Sabatini DD. 1982. Biosynthesis of lysosomal hydrolases: their synthesis in bound polysomes and the role of co- and post-translational processing in determining their subcellular distribution. J. Cell Biol. 93:135–43 [Google Scholar]
  101. Rosenfeld MG, Marcantonio EE, Hakimi J, Ort VM, Atkinson PH. et al. 1984. Biosynthesis and processing of ribophorins in the endoplasmic reticulum. J. Cell Biol. 99:1076–82 [Google Scholar]
  102. Sabatini DD. 1999. George E. Palade: charting the secretory pathway. Trends Cell Biol. 9:413–17 [Google Scholar]
  103. Sabatini DD, Bensch K, Barrnett RJ. 1963. Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation J. Cell Biol. 17:19–58 [Google Scholar]
  104. Sabatini DD, Blobel G. 1970. Controlled proteolysis of nascent polypeptides in rat liver cell fractions. II. Location of the polypeptides in rough microsomes J. Cell Biol. 45:146–57 [Google Scholar]
  105. Sabatini DD, Blobel G, Nonomura Y, Adelman MR. 1971. Ribosome-membrane interaction: structural aspects and functional implications. Adv. Cytopharmacol. 1:119–29 [Google Scholar]
  106. Sabatini DD, Borgese N, Adelman MR, Kreibich G, Blobel G. 1972. Studies on the membrane associated protein synthesis apparatus of eukaryotic cells. RNA viruses/ribosomes FEBS Symp. 27:147–71 [Google Scholar]
  107. Sabatini DD, De Robertis ED. 1961. Ultrastructural zonation of adrenocortex in the rat. J. Biophys. Biochem. Cytol. 9:105–19 [Google Scholar]
  108. Sabatini DD, De Robertis ED, Bleichmar HB. 1962. Submicroscopic study of the pituitary action on the adrenocortex of the rat. Endocrinology 70:390–406 [Google Scholar]
  109. Sabatini DD, Kreibich G, Morimoto T, Adesnik M. 1982. Mechanisms for the incorporation of proteins in membranes and organelles. J. Cell Biol. 92:1–22 [Google Scholar]
  110. Sabatini DD, Miller F, Barrnett RJ. 1964. Aldehyde fixation for morphological and enzyme histochemical studies with the electron microscope. J. Histochem. Cytochem. 12:57–71 [Google Scholar]
  111. Sabatini DD, Tashiro Y, Palade GE. 1966. On the attachment of ribosomes to microsomal membranes. J. Mol. Biol. 19:503–24 [Google Scholar]
  112. Sabban E, Marchesi V, Adesnik M, Sabatini DD. 1981. Erythrocyte membrane protein band 3: its biosynthesis and incorporation into membranes. J. Cell Biol. 91:637–46 [Google Scholar]
  113. Sanders SL, Whitfield KM, Vogel JP, Rose MD, Schekman RW. 1992. Sec61p and BiP directly facilitate polypeptide translocation into the ER. Cell 69:353–65 [Google Scholar]
  114. Sherman J. MT, Sabatini D. 1983. Biosynthesis of the Na, K-ATPase in MDCK cells. In Current Topics in Membrane and Transport ed. F Bonner, A Kleinzeller 19753–64 New York: Academic [Google Scholar]
  115. Siekevitz P. 1952. Uptake of radioactive alanine in vitro into the proteins of rat liver fractions. J. Biol. Chem. 195:549–65 [Google Scholar]
  116. Siekevitz P, Palade GE. 1960. A cytochemical study on the pancreas of the guinea pig. 5. In vivo incorporation of leucine-1-C14 into the chymotrypsinogen of various cell fractions J. Biophys. Biochem. Cytol. 7:619–30 [Google Scholar]
  117. Simon JP, Ivanov IE, Adesnik M, Sabatini DD. 1996a. The production of post-Golgi vesicles requires a protein kinase C-like molecule, but not its phosphorylating activity. J. Cell Biol. 135:355–70 [Google Scholar]
  118. Simon JP, Ivanov IE, Shopsin B, Hersh D, Adesnik M, Sabatini DD. 1996b. The in vitro generation of post-Golgi vesicles carrying viral envelope glycoproteins requires an ARF-like GTP-binding protein and a protein kinase C associated with the Golgi apparatus. J. Biol. Chem. 271:16952–61 [Google Scholar]
  119. Simon JP, Morimoto T, Bankaitis VA, Gottlieb TA, Ivanov IE. et al. 1998. An essential role for the phosphatidylinositol transfer protein in the scission of coatomer-coated vesicles from the trans-Golgi network. Proc. Natl. Acad. Sci. USA 95:11181–86 [Google Scholar]
  120. Simon SM, Blobel G. 1991. A protein-conducting channel in the endoplasmic reticulum. Cell 65:371–80 [Google Scholar]
  121. Singer SJ. 1959. Preparation of an electron-dense antibody conjugate. Nature 183:1523–24 [Google Scholar]
  122. Singer SJ, Nicolson GL. 1972. The fluid mosaic model of the structure of cell membranes. Science 175:720–31 [Google Scholar]
  123. Tashiro Y, Siekevitz P. 1965. Ultracentrifugal studies on the dissociation of hepatic ribosomes. J. Mol. Biol. 11:149–65 [Google Scholar]
  124. Tashiro Y, Yphantis DA. 1965. Molecular weights of hepatic ribosomes and their subunits. J. Mol. Biol. 11:174–86 [Google Scholar]
  125. Tissieres A, Watson JD, Schlessinger D, Hollingworth BR. 1959. Ribonucleoprotein particles from Escherichia coli. J. Mol. Biol. 1:221–33 [Google Scholar]
  126. Tokuyasu KT, Singer SJ. 1976. Improved procedures for immunoferritin labeling of ultrathin frozen sections. J. Cell Biol. 71:894–906 [Google Scholar]
  127. Tonegawa S, Baldi I. 1973. Electrophoretically homogeneous myeloma light chain mRNA and its translation in vitro. Biochem. Biophys. Res. Commun. 51:81–87 [Google Scholar]
  128. van den Berg B, Clemons WM Jr, Collinson I, Modis Y, Hartmann E. et al. 2004. X-ray structure of a protein-conducting channel. Nature 427:36–44 [Google Scholar]
  129. Walter P, Blobel G. 1981. Translocation of proteins across the endoplasmic reticulum. II. Signal recognition protein (SRP) mediates the selective binding to microsomal membranes of in-vitro-assembled polysomes synthesizing secretory protein J. Cell Biol. 91:551–56 [Google Scholar]
  130. Walter P, Blobel G. 1983. Disassembly and reconstitution of signal recognition particle. Cell 34:525–33 [Google Scholar]
  131. Walter P, Ibrahimi I, Blobel G. 1981. Translocation of proteins across the endoplasmic reticulum. I. Signal recognition protein (SRP) binds to in-vitro-assembled polysomes synthesizing secretory protein J. Cell Biol. 91:545–50 [Google Scholar]
  132. Wirth DF, Katz F, Small B, Lodish HF. 1977. How a single Sindbis virus mRNA directs the synthesis of one soluble protein and two integral membrane glycoproteins. Cell 10:253–63 [Google Scholar]
  133. Ye Y, Shibata Y, Yun C, Ron D, Rapoport TA. 2004. A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429:841–47 [Google Scholar]
  134. Yu YH, Sabatini DD, Kreibich G. 1990. Antiribophorin antibodies inhibit the targeting to the ER membrane of ribosomes containing nascent secretory polypeptides. J. Cell Biol. 111:1335–42 [Google Scholar]
/content/journals/10.1146/annurev.cellbio.21.020904.151711
Loading
/content/journals/10.1146/annurev.cellbio.21.020904.151711
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error