1932

Abstract

Abstract

The TGF-β family comprises many structurally related differentiation factors that act through a heteromeric receptor complex at the cell surface and an intracellular signal transducing Smad complex. The receptor complex consists of two type II and two type I transmembrane serine/threonine kinases. Upon phosphorylation by the receptors, Smad complexes translocate into the nucleus, where they cooperate with sequence-specific transcription factors to regulate gene expression. The vertebrate genome encodes many ligands, fewer type II and type I receptors, and only a few Smads. In contrast to the perceived simplicity of the signal transduction mechanism with few Smads, the cellular responses to TGF-β ligands are complex and context dependent. This raises the question of how the specificity of the ligand-induced signaling is achieved. We review the molecular basis for the specificity and versatility of signaling by the many ligands through this conceptually simple signal transduction mechanism.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.cellbio.21.022404.142018
2005-11-10
2024-10-13
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.cellbio.21.022404.142018
Loading
/content/journals/10.1146/annurev.cellbio.21.022404.142018
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error