I have been fascinated by chromosomes for longer than I care to mention; their beautiful structure, cell-type-specific changes in morphology, and elegant movements delight me. Shortly before I began graduate study, the development of nucleic acid hybridization made it possible to compare two nucleic acids whether or not their sequences were known. From this stemmed a progression of development in tools and techniques that continues to enhance our understanding of how chromosomes function. As my PhD project I contributed to this progression by developing in situ hybridization, a technique for hybridization to nucleic acids within their cellular context. Early studies with this technique initiated several lines of research, two of which I describe here, that I have pursued to this day. First, analysis of RNA populations by hybridization to polytene chromosomes (a proto-microarray-type experiment) led us to characterize levels of regulation during heat shock beyond those recognizable by puffing studies. We found also that one still-undeciphered major heat shock puff encodes a novel set of RNAs for which we propose a regulatory role. Second, localization of various multicopy DNA sequences has suggested roles for them in chromosome structure: Most recently we have found that telomeres consist of and are maintained by special non-LTR (long terminal repeat) retrotransposons.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Arrighi FE, Hsu TC. 1971. Localization of heterochromatin in human chromosomes. Cytogenetics 10:81–86 [Google Scholar]
  2. Ballinger DG, Pardue ML. 1983. The control of protein synthesis during heat shock in Drosophila cells involves altered polypeptide elongation rates. Cell 33:103–13 [Google Scholar]
  3. Bendena WG, Ayme-Southgate A, Garbe JC, Pardue ML. 1991. Expression of heat-shock locus hsr-omega in nonstressed cells during development in Drosophila melanogaster. Dev. Biol. 144:65–77 [Google Scholar]
  4. Bendena WG, Garbe JC, Traverse KL, Lakhotia SC, Pardue ML. 1989. Multiple inducers of the Drosophila heat shock locus 93D (hsr omega): inducer-specific patterns of the three transcripts. J. Cell Biol. 108:2017–28 [Google Scholar]
  5. Beverley SM, Wilson AC. 1984. Molecular evolution in Drosophila and the higher Diptera II. A time scale for fly evolution. J. Mol. Evol. 21:1–13 [Google Scholar]
  6. Biessmann H, Carter SB, Mason JM. 1990a. Chromosome ends in Drosophila without telomeric DNA sequences. Proc. Natl. Acad. Sci. USA 87:1758–61 [Google Scholar]
  7. Biessmann H, Mason JM. 1988. Progressive loss of DNA sequences from terminal chromosome deficiencies in Drosophila melanogaster. EMBO J. 7:1081–86 [Google Scholar]
  8. Biessmann H, Mason JM, Ferry K, d’Hulst M, Valgeirsdottir K, Traverse KL, Pardue ML. 1990b. Addition of telomere-associated HeT DNA sequences “heals” broken chromosome ends in Drosophila. Cell 61:663–73 [Google Scholar]
  9. Biessmann H, Valgeirsdottir K, Lofsky A, Chin C, Ginther B, Levis RW, Pardue ML. 1992. HeT-A, a transposable element specifically involved in “healing” broken chromosome ends in Drosophila melanogaster. Mol. Cell. Biol. 12:3910–18 [Google Scholar]
  10. Birnstiel ML, Sells BH, Purdom IF. 1972. Kinetic complexity of RNA molecules. J. Mol. Biol. 63:21–39 [Google Scholar]
  11. Bonner JJ, Pardue ML. 1976. The effect of heat shock on RNA synthesis in Drosophila tissues. Cell 8:43–50 [Google Scholar]
  12. Britten RJ, Kohne DE. 1968. Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science 161:529–40 [Google Scholar]
  13. Brown DD, Dawid IB. 1968. Specific gene amplification in oocytes. Oocyte nuclei contain extrachromosomal replicas of the genes for ribosomal RNA. Science 160:272–80 [Google Scholar]
  14. Brown DD, Sugimoto K. 1973. 5 S DNAs of Xenopus laevis and Xenopus mulleri: evolution of a gene family. J. Mol. Biol. 78:397–415 [Google Scholar]
  15. Brown DD, Wensink PC, Jordan E. 1971. Purification and some characteristics of 5S DNA from Xenopus laevis. Proc. Natl. Acad. Sci. USA 68:3175–79 [Google Scholar]
  16. Casacuberta E, Pardue ML. 2002. Coevolution of the telomeric retrotransposons across Drosophila species. Genetics 161:1113–24 [Google Scholar]
  17. Casacuberta E, Pardue ML. 2003a. HeT-A elements in Drosophila virilis: Retrotransposon telomeres are conserved across the Drosophila genus. Proc. Natl. Acad. Sci. USA 100:14091–96 [Google Scholar]
  18. Casacuberta E, Pardue ML. 2003b. Transposon telomeres are widely distributed in the Drosophila genus: TART elements in the virilis group. Proc. Natl. Acad. Sci. USA 100:3363–68 [Google Scholar]
  19. Cech TR, Pardue ML. 1976. Electron microscopy of DNA crosslinked with trimethylpsoralen: test of the secondary structure of eukaryotic inverted repeat sequences. Proc. Natl. Acad. Sci. USA 73:2644–48 [Google Scholar]
  20. Cech T, Potter D, Pardue ML. 1977. Electron microscopy of DNA cross-linked with trimethylpsoralen: a probe for chromatin structure. Biochemistry 16:5313–21 [Google Scholar]
  21. Cech TR, Zaug AJ, Grabowski PJ. 1981. In vitro splicing of the ribosomal RNA precursor of Tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell 27:487–96 [Google Scholar]
  22. Danilevskaya O, Slot F, Pavlova M, Pardue ML. 1994. Structure of the Drosophila HeT-A transposon: a retrotransposon-like element forming telomeres. Chromosoma 103:215–24 [Google Scholar]
  23. Danilevskaya ON, Petrov DA, Pavlova MN, Koga A, Kurenova EV, Hartl DL. 1992. A repetitive DNA element, associated with telomeric sequences in Drosophila melanogaster, contains open reading frames. Chromosoma 102:32–40 [Google Scholar]
  24. Danilevskaya ON, Tan C, Wong J, Alibhai M, Pardue ML. 1998. Unusual features of the Drosophila melanogaster telomere transposable element HeT-A are conserved in Drosophila yakuba telomere elements. Proc. Natl. Acad. Sci. USA 95:3770–75 [Google Scholar]
  25. Dawid IB, Long EO, DiNocera PP, Pardue ML. 1981. Ribosomal insertion-like elements in Drosophila melanogaster are interspersed with mobile sequences. Cell 25:399–408 [Google Scholar]
  26. Doty P, Marmur J, Eigner J, Schildkraut C. 1960. Strand separation and specific recombination in deoxyribonucleic acids: physical chemical studies. Proc. Natl. Acad. Sci. USA 46:461–76 [Google Scholar]
  27. Fini ME, Bendena WG, Pardue ML. 1989. Unusual behavior of the cytoplasmic transcript of hsrω: an abundant, stress-inducible RNA that is translated but yields no detectable protein product. J. Cell Biol. 108:2045–57 [Google Scholar]
  28. Freed EO. 1998. HIV-1 gag proteins: diverse functions in the virus life cycle. Virology 251:1–15 [Google Scholar]
  29. Gall JG. 1963. Kinetics of deoxyribonuclease action on chromosomes. Nature 198:36–38 [Google Scholar]
  30. Gall JG. 1968. Differential synthesis of the genes for ribosomal RNA during amphibian oogenesis. Proc. Natl. Acad. Sci. USA 60:553–60 [Google Scholar]
  31. Gall JG, Callan HG. 1962. H3 uridine incorporation in lampbrush chromosomes. Proc. Natl. Acad. Sci. USA 48:562–70 [Google Scholar]
  32. Gall JG, Pardue ML. 1969. Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc. Natl. Acad. Sci. USA 63:378–83 [Google Scholar]
  33. Garbe JC, Bendena WG, Alfano M, Pardue ML. 1986. A Drosophila heat shock locus with a rapidly diverging sequence but a conserved structure. J. Biol. Chem. 261:16889–94 [Google Scholar]
  34. Garbe JC, Bendena WG, Pardue ML. 1989. Sequence evolution of the Drosophila heat shock locus hsrω. I. The nonrepeated portion of the gene. Genetics 122:403–15 [Google Scholar]
  35. Garbe JC, Pardue ML. 1986. Heat shock locus 93D of Drosophila melanogaster: a spliced RNA most strongly conserved in the intron sequence. Proc. Natl. Acad. Sci. USA 83:1812–16 [Google Scholar]
  36. George JA, DeBaryshe PG, Traverse KL, Celniker SE, Pardue ML. 2006. Genomic organization of the Drosophila telomere retrotransposable elements. Genome Res. 16:1231–40 [Google Scholar]
  37. Hogan NC, Slot F, Traverse KL, Garbe JC, Bendena WG, Pardue ML. 1995. Stability of tandem repeats in the Drosophila melanogaster Hsr-omega nuclear RNA. Genetics 139:1611–21 [Google Scholar]
  38. Hogan NC, Traverse KL, Sullivan DE, Pardue ML. 1994. The nucleus-limited Hsr-omega-n transcript is a polyadenylated RNA with a regulated intranuclear turnover. J. Cell Biol. 125:21–30 [Google Scholar]
  39. Hutchison N, Pardue ML. 1975. The mitotic chromosomes of Notophthalmus (Triturus) viridescens: localization of C banding regions and DNA sequences complementary to 18S, 28S and 5S ribosomal RNA. Chromosoma 53:51–69 [Google Scholar]
  40. Karrer KM, Gall JG. 1976. The macronuclear ribosomal DNA of Tetrahymena pyriformis is a palindrome. J. Mol. Biol. 104:421–53 [Google Scholar]
  41. Kedes LH, Gross PR. 1969. Identification in cleaving embryos of three RNA species serving as templates for the synthesis of nuclear proteins. Nature 223:1335–39 [Google Scholar]
  42. Kit S. 1961. Equilibrium sedimentation in density gradients of DNA preparations from animal tissues. J. Mol. Biol. 3:711–16 [Google Scholar]
  43. Lakhotia SC, Mukherjee T. 1980. Specific activation of puff 93D of Drosophila melanogaster by benzamide and the effect of benzamide treatment on heat induced puffing activity. Chromosoma 81:125–36 [Google Scholar]
  44. Lakhotia SC, Mukherjee T. 1984. Specific induction of the 93D puff in polytene nuclei of D. melanogaster by colchicine. Indian J. Exp. Biol. 22:67–70 [Google Scholar]
  45. Lakhotia SC, Singh AK. 1982. Conservation of the 93D puff of Drosophila melanogaster in different species of Drosophila. Chromosoma 86:265–78 [Google Scholar]
  46. Lengyel JA, Pardue ML. 1975. Analysis of hnRNA made during heat shock in Drosophila melanogaster cultured cells. J. Cell Biol. 67:240a [Google Scholar]
  47. Lengyel JA, Ransom LJ, Graham ML, Pardue ML. 1980. Transcription and metabolism of RNA from the Drosophila melanogaster heat shock puff site 93D. Chromosoma 80:237–52 [Google Scholar]
  48. Levis RW, Ganesan R, Houtchens K, Tolar LA, Sheen FM. 1993. Transposons in place of telomeric repeats at a Drosophila telomere. Cell 75:1083–93 [Google Scholar]
  49. Lifton RP, Goldberg ML, Karp RW, Hogness DS. 1978. The organization of the histone genes in Drosophila melanogaster: functional and evolutionary implications. Cold Spring Harb. Symp. Quant. Biol. 42:(Pt. 2)1047–51 [Google Scholar]
  50. Lindquist S, DiDomenico B, Bugaisky G, Kurtz S, Petko L, Sonoda S. 1982. Regulation of the heat-shock response in Drosophila and yeast. In Heat Shock from Bacteria to Man ed. MJ Schlesinger, M Ashburner, A Tissieres pp. 167–75 Cold Spring Harbor, NY Cold Spring Harb. Lab.: [Google Scholar]
  51. Lowenhaupt K, Rich A, Pardue ML. 1989. Nonrandom distribution of long mono- and dinucleotide repeats in Drosophila chromosomes: correlations with dosage compensation, heterochromatin, and recombination. Mol. Cell. Biol. 9:1173–82 [Google Scholar]
  52. Maio JJ, Schildkraut CL. 1967. Isolated mammalian metaphase chromosomes. I. General charactereistics of nucleid acids and proteins. J. Mol. Biol. 24:29–39 [Google Scholar]
  53. Marmur J, Lane D. 1960. Strand separation and specific recombination in deoxyribonucleic acids: biological studies. Proc. Natl. Acad. Sci. USA 46:453–61 [Google Scholar]
  54. Mason JM, Strobel E, Green MM. 1984. mu-2: mutator gene in Drosophila that potentiates the induction of terminal deficiencies. Proc. Natl. Acad. Sci. USA 81:6090–94 [Google Scholar]
  55. McKenzie SL, Henikoff S, Meselson M. 1975. Localization of RNA from heat-induced polysomes at puff sites in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 72:1117–21 [Google Scholar]
  56. Mohler J, Pardue ML. 1984. Mutational analysis of the region surrounding the 93D heat shock locus of Drosophila melanogaster. Genetics 106:249–65 [Google Scholar]
  57. Morrow JF, Cohen SN, Chang AC, Boyer HW, Goodman HM, Helling RB. 1974. Replication and transcription of eukaryotic DNA in Escherichia coli. Proc. Natl. Acad. Sci. USA 71:1743–47 [Google Scholar]
  58. Muller HJ. 1938. The remaking of chromosomes. Collecting Net. 13:181–95 [Google Scholar]
  59. Muller HJ, Herskowitz IH. 1954. Concerning the healing of chromosome ends produced by breakage in Drosophila melanogaster. Am. Nat. 88:177–208 [Google Scholar]
  60. Nemer M, Lindsay DT. 1969. Evidence that the s-polysomes of early sea urchin embryos may be responsible for the synthesis of chromosomal histones. Biochem. Biophys. Res. Commun. 35:156–60 [Google Scholar]
  61. Painter TS, Taylor AN. 1942. Nucleic acid storage in the toad's egg. Proc. Natl. Acad. Sci. USA 28:311–17 [Google Scholar]
  62. Pardue ML. 1974. Localization of repeated DNA sequences in Xenopus chromosomes. Cold Spring Harb. Symp. Quant. Biol. 38:475–82 [Google Scholar]
  63. Pardue ML, Brown DD, Birnstiel ML. 1973. Location of the genes for 5S ribosomal RNA in Xenopus laevis. Chromosoma 42:191–203 [Google Scholar]
  64. Pardue ML, DeBaryshe PG. 2003. Retrotransposons provide an evolutionarily robust non-telomerase mechanism to maintain telomeres. Annu. Rev. Genet. 37:485–511 [Google Scholar]
  65. Pardue ML, Fostel JM, Cech TR. 1984. DNA-protein interactions in the Drosophila virilis mitochondrial chromosome. Nucleic Acids Res. 12:1991–99 [Google Scholar]
  66. Pardue ML, Gall JG. 1969. Molecular hybridization of radioactive DNA to the DNA of cytological preparations. Proc. Natl. Acad. Sci. USA 64:600–4 [Google Scholar]
  67. Pardue ML, Gall JG. 1970. Chromosomal localization of mouse satellite DNA. Science 168:1356–58 [Google Scholar]
  68. Pardue ML, Gerbi SA, Eckhardt RA, Gall JG. 1970. Cytological localization of DNA complementary to ribosomal RNA in polytene chromosomes of Diptera. Chromosoma 29:268–90 [Google Scholar]
  69. Pardue ML, Kedes LH, Weinberg ES, Birnstiel ML. 1977. Localization of sequences coding for histone messenger RNA in the chromosomes of Drosophila melanogaster. Chromosoma 63:135–51 [Google Scholar]
  70. Pardue ML, Lowenhaupt K, Rich A, Nordheim A. 1987. (dC-dA)n.(dG-dT)n sequences have evolutionarily conserved chromosomal locations in Drosophila with implications for roles in chromosome structure and function. EMBO J. 6:1781–89 [Google Scholar]
  71. Pardue ML, Scott MP, Storti RV, Lengyel JA. 1980. The heat shock response: a model system for the study of gene regulation in Drosophila. Basic Life Sci. 16:41–55 [Google Scholar]
  72. Potter DA, Fostel JM, Berninger M, Pardue ML, Cech TR. 1980. DNA-protein interactions in the Drosophila melanogaster mitochondrial genome as deduced from trimethylpsoralen crosslinking patterns. Proc. Natl. Acad. Sci. USA 77:4118–22 [Google Scholar]
  73. Rashkova S, Athanasiadis A, Pardue ML. 2003. Intracellular targeting of Gag proteins of the Drosophila telomeric retrotransposons. J. Virol. 77:6376–84 [Google Scholar]
  74. Rashkova S, Karam SE, Kellum R, Pardue ML. 2002a. Gag proteins of the two Drosophila telomeric retrotransposons are targeted to chromosome ends. J. Cell Biol. 159:397–402 [Google Scholar]
  75. Rashkova S, Karam SE, Pardue ML. 2002b. Element-specific localization of Drosophila retrotransposon Gag proteins occurs in both nucleus and cytoplasm. Proc. Natl. Acad. Sci. USA 99:3621–26 [Google Scholar]
  76. Ritossa F. 1962. A new puffing pattern induced by temperature shock and DNP in Drosophila. Experentia 18:571–73 [Google Scholar]
  77. Ritossa FM, Spiegelman S. 1965. Localization of DNA complementary to ribosomal RNA in the nucleolus organizer region of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 53:737–45 [Google Scholar]
  78. Roberts PA. 1975. In support of the telomere concept. Genetics 80:135–42 [Google Scholar]
  79. Scott MP, Pardue ML. 1981. Translational control in lysates of Drosophila melanogaster cells. Proc. Natl. Acad. Sci. USA 78:3353–57 [Google Scholar]
  80. Slawson EE, Shaffer CD, Malone CD, Leung W, Kellmann E. et al. 2006. Comparison of dot chromosome sequences from D. melanogaster and D. virilis reveals an enrichment of DNA transposon sequences in heterochromatic domains. Genome Biol. 7:R15 [Google Scholar]
  81. Spradling A, Pardue ML, Penman S. 1977. Messenger RNA in heat-shocked Drosophila cells. J. Mol. Biol. 109:559–87 [Google Scholar]
  82. Spradling A, Penman S, Pardue ML. 1975. Analysis of Drosophila mRNA by in situ hybridization: sequences transcribed in normal and heat shocked cultured cells. Cell 4:395–404 [Google Scholar]
  83. Steffensen DM, Wimber DE. 1971. Localization of tRNA genes in the salivary chromosomes of Drosophila by RNA:DNA hybridization. Genetics 69:163–78 [Google Scholar]
  84. Szostak JW, Blackburn EH. 1982. Cloning yeast telomeres on linear plasmid vectors. Cell 29:245–55 [Google Scholar]
  85. Tissieres A, Mitchell HK, Tracy UM. 1974. Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J. Mol. Biol. 84:389–98 [Google Scholar]
  86. Traverse KL, Pardue ML. 1988. A spontaneously opened ring chromosome of Drosophila melanogaster has acquired He-T DNA sequences at both new telomeres. Proc. Natl. Acad. Sci. USA 85:8116–20 [Google Scholar]
  87. Valgeirsdottir K, Traverse KL, Pardue ML. 1990. HeT DNA: a family of mosaic repeated sequences specific for heterochromatin in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 87:7998–8002 [Google Scholar]
  88. Wallace H, Birnstiel ML. 1966. Ribosomal cistrons and the nucleolar organizer. Biochim. Biophys. Acta 114:296–310 [Google Scholar]
  89. Wang AH, Quigley GJ, Kolpak FJ, Crawford JL, van Boom JH. et al. 1979. Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature 282:680–86 [Google Scholar]
  90. Wensink PC, Finnegan DJ, Donelson JE, Hogness DS. 1974. A system for mapping DNA sequences in the chromosomes of Drosophila melanogaster. Cell 3:315–25 [Google Scholar]
  91. Young BS, Pession A, Traverse KL, French C, Pardue ML. 1983. Telomere regions in Drosophila share complex DNA sequences with pericentric heterochromatin. Cell 3485–94 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error