This Perspective is an account of my early experience while I studied the dynamic organization and behavior of the mitotic spindle and its submicroscopic filaments using polarized light microscopy. The birefringence of spindle filaments in normally dividing plant and animal cells, and those treated by various agents, revealed () the reality of spindle fibers and fibrils in healthy living cells; () the labile, dynamic nature of the molecular filaments making up the spindle fibers; () the mode of fibrogenesis and action of orienting centers; and () force-generating properties based on the disassembly and assembly of the fibrils. These studies, which were carried out directly on living cells using improved polarizing microscopes, in fact predicted the reversible assembly properties of microtubules.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Ambronn H, Frey A. 1926. Das Polarisationsmikroskop: Seine Anwendung in der Kolloidforschung und in der Färberei Leipzig: Akad. Verlag [Google Scholar]
  2. Bajer A. 1951. Ciné-micrographic studies on mitosis in endosperm. III. The origin of the mitotic spindle. Exp. Cell Res. 13:493–502 [Google Scholar]
  3. Bajer A, Molé-Bajer J. 1956. Ciné-micrographic studies on mitosis in endosperm. II. Chromosome, cytoplasmic and Brownian movements. Chromosoma 7:558–607 [Google Scholar]
  4. Be˘lař K. 1929. Beitäge zur Kausalanalyse der Mitose. II. Untersuchungen an den Spermatocyten von Chorthippus (Stenobothrus) lineatus Panz. Roux Archiv f. Entwmk. 118:359–484 and Plates I–VIII [Google Scholar]
  5. Bennett HS. 1950. The microscopical investigation of biological tissues with polarized light. Handbook of Biological Technique CE McLung 591–677 New York: Harper & Row [Google Scholar]
  6. Borisy GG, Taylor EW. 1967. The mechanism of action of colchicine: binding of colchicine-3H to cellular protein. J. Cell Biol. 34:525–33 [Google Scholar]
  7. Bragg WL, Pippard AB. 1953. The form birefringence of macromolecules. Acta Crystallogr. B 6:865–67 [Google Scholar]
  8. Cleveland LR. 1938. Origin and development of the achromatic figure. Biol. Bull. 74:41–55 [Google Scholar]
  9. Cooper KW. 1941. Visibility of the primary spindle fibers and the course of mitosis in the living blastomeres of the mite, Pediculopsis granimum Reut. Proc. Natl. Acad. Sci. USA 27:480–83 [Google Scholar]
  10. Coue M, Lombillo VA, McIntosh JR. 1991. Microtubule depolymerization promotes particle and chromosome movement in vitro. J. Cell Biol. 112:1165–75 [Google Scholar]
  11. Dan K. 1943. Behavior of the cell surface during cleavage. VI. On the mechanism of cell division. J. Fac. Sci. Tokyo Imp. Univ. (Ser. IV) 6:323–68 [Google Scholar]
  12. Forer A. 1965. Local reduction in spindle birefringence in living Nephrotoma suturalis (Loew) spermatocytes induced by UV microbeam irradiation. J. Cell Biol. 25:95–117 [Google Scholar]
  13. Frey-Wyssling A. 1953. Submicroscopic Morphology of Protoplasm Amsterdam: Elsevier [Google Scholar]
  14. Gordon G. 1979. Unexpected increase in poleward velocities of mitotic chromosomes after UV irradiation of their kinetochore fibers. J. Cell Biol. 83:376a [Google Scholar]
  15. Harris P. 1962. Some structural and functional aspects of the mitotic apparatus in sea urchin embryos. J. Cell Biol. 14:475–85 [Google Scholar]
  16. Hartshorne NH, Stuart A. 1960. Crystals and the Polarising Microscope: A Handbook for Chemists and Others London: Arnold, 3rd.ed. [Google Scholar]
  17. Heidemann SR, McIntosh JR. 1981. Visualization of the structural polarity of microtubules. Nature 286:517–19 [Google Scholar]
  18. Howard J, Hyman AA. 2007. Microtubule polymerases and depolymerases. Curr. Opin. Cell Biol. 19:31–35 [Google Scholar]
  19. Inoué S. 1951. A method for measuring small retardations of structures in living cells. Exp. Cell Res. 2:513–17 [Google Scholar]
  20. Inoué S. 1952a. Effect of temperature on the birefringence of the mitotic spindle. Biol. Bull. 103:316 [Google Scholar]
  21. Inoué S. 1952b. Studies on depolarization of light at microscope lens surfaces. I. The origin of stray light by rotation at the lens surfaces. Exp. Cell Res. 3:199–208 [Google Scholar]
  22. Inoué S. 1952c. The effect of colchicine on the microscopic and submicroscopic structure of the mitotic spindle. Exp. Cell Res. Suppl. 2:305–18 [Google Scholar]
  23. Inoué S. 1953. Polarization optical studies of the mitotic spindle. I. The demonstration of spindle fibers in living cells. Chromosoma 5:487–500 [Google Scholar]
  24. Inoué S. 1964. Organization and function of the mitotic spindle. Primitive Motile Systems in Cell Biology RD Allen, N Kamiya 549–98 New York: Academic [Google Scholar]
  25. Inoué S. 1981. Cell division and the mitotic spindle. J. Cell Biol. 91:131s–47s [Google Scholar]
  26. Inoué S. 1986. Video Microscopy New York: Plenum [Google Scholar]
  27. Inoué S. 1994. A tribute to Katsuma Dan. Biol. Bull. 187:125–31 [Google Scholar]
  28. Inoué S. 2002. Polarization microscopy. Curr. Protoc. Cell Biol. Suppl. 13:4.9.1–27 [Google Scholar]
  29. Inoué S. 2008a. Collected Works of Shinya Inoué: Microscopes, Living Cells, and Dynamic Molecules Singapore: World Sci. Publ. [Google Scholar]
  30. Inoué S. 2008b (1951). Doctoral thesis, Studies of the structure of the mitotic spindle in living cells with an improved polarization microscope, Part I: Introduction. Published as Article 7 in Inoué 2008a
  31. Inoué S. 2008c (1951). Doctoral thesis, Studies of the structure of the mitotic spindle in living cells with an improved polarization microscope, Part VI: The submicroscopic structure of the spindle in living cells. Published as Article 12 in Inoué 2008a
  32. Inoué S, Bajer A. 1961. Birefringence in endosperm mitosis. Chromosoma 12:48–63 [Google Scholar]
  33. Inoué S, Dan K. 1951. Birefringence of the dividing cell. J. Morphol. 89:423–56 [Google Scholar]
  34. Inoué S, Hyde WL. 1957. Studies on depolarization of light at microscope lens surfaces. II. The simultaneous realization of high resolution and high sensitivity with the polarizing microscope. J. Biophys. Biochem. Cytol. 3:831–38 [Google Scholar]
  35. Inoué S, Inoué TD. 1986. Computer-aided stereoscopic video reconstruction and serial display from high-resolution light-microscope optical sections. Ann. N.Y. Acad. Sci. 483:392–404 [Google Scholar]
  36. Inoué S, Oldenbourg R. 1998. Microtubule dynamics in mitotic spindle displayed by polarized light microscopy. Mol. Biol. Cell 9:1603–7 ( http://www.molbiolcell.org/cgi/content/full/9/7/1603) [Google Scholar]
  37. Inoué S, Ritter H Jr. 1975. Dynamics of mitotic spindle organization and function. Molecules and Cell Movement S. Inoué, RE Stephens 3–30 New York: Raven Press [Google Scholar]
  38. Inoué S, Salmon ED. 1995. Force generation by assembly/disassembly in mitosis and related movements. Mol. Biol. Cell 6:1619–40 [Google Scholar]
  39. Inoué S, Sato H. 1967. Cell motility by labile association of molecules. J. Gen. Physiol. 50:259–92 [Google Scholar]
  40. Koshland DE, Mitchison TJ, Kirschner M. 1988. Polewards chromosome movement driven by microtubule depolymerization in vitro. Nature 331:499–504 [Google Scholar]
  41. Maiato H, DeLuca J, Salmon ED, Earnshaw WC. 2004. The dynamic kinetochore-microtubule interface. J. Cell Sci. 117:5461–77 [Google Scholar]
  42. Margolis RL, Wilson L. 1978. Opposite end assembly and disassembly of microtubules at steady state in vitro. Cell 13:1–8 [Google Scholar]
  43. Mazia D, Dan K. 1952. The isolation and biochemical characterization of the mitotic apparatus of the dividing cell. Proc. Natl. Acad. Sci. USA 38:826–38 [Google Scholar]
  44. McIntosh JR, Hepler PK, van Wie DG. 1969. Model for mitosis. Nature 224:659–63 [Google Scholar]
  45. Mitchison JM, Kirschner M. 1984. Dynamic instability of microtubule growth. Nature 312:237–42 [Google Scholar]
  46. Mitchison TJ, Salmon ED. 2001. Mitosis: a history of cell division. Nat. Cell Biol. 3:E17–21 [Google Scholar]
  47. Mogilner A, Wollman R, Civelekoglu-Scholey G, Scholey J. 2006. Modeling mitosis. Trends Cell Biol. 16:88–96 [Google Scholar]
  48. Nicklas RB. 1971. Mitosis. Advances in Cell Biology DM Prescott, L Goldstein, E McConkey 2225–97 New York: Appleton-Century-Croft [Google Scholar]
  49. Nicklas RB, Koch CA. 1969. Chromosome micromanipulation III. Spindle fiber tension and the reorientation of mal-oriented chromosomes. J. Cell Biol. 43:40–50 [Google Scholar]
  50. Nicklas RB, Staehly CA. 1967. Chromosome micromanipulation I. The mechanics of chromosome attachment to the spindle. Chromosoma 21:1–16 [Google Scholar]
  51. Nicklas RB, Waters JC, Salmon ED, Ward SC. 2001. Checkpoint signals in grasshopper meiosis are sensitive to microtubule attachment, but tension is still essential. J. Cell Sci. 114:4173–83 [Google Scholar]
  52. Okazaki K, Inoué S. 1976. Crystal property of the larval sea urchin spicule. Dev. Growth Differ. 18:413–34 [Google Scholar]
  53. Östergren G. 1949. Luzula and the mechanism of chromosome movements. Hereditas 35:445–68 [Google Scholar]
  54. Pawley JB. 2006. Handbook of Biological Confocal Microscopy New York: Plenum, 3rd.ed. [Google Scholar]
  55. Porter KR. 1966. Cytoplasmic microtubules and their function. Ciba Foundation Symposium on Principles of Biomolecular Organization GEW Wolstenholme, M O'Connor 308–45 London: Churchill [Google Scholar]
  56. Rinne FWB, Bereck M. 1953. Anleitung zu optischen Unterzuchungen mit dem Polarizationsmikroskop Stuttgart: Schweizerbart [Google Scholar]
  57. Robbins E, Gonatas NK. 1964. The ultrastructure of a mammalian cell during the mitotic cycle. J. Cell Biol. 21:429–63 [Google Scholar]
  58. Roth LE. 1967. Electron microscopy of mitosis in Amebae. III. Cold and urea treatments: a basis for tests of direct effects of mitotic inhibitors on microtubule formation. J. Cell Biol. 34:47–59 [Google Scholar]
  59. Sabatini DD. 2005. In awe of subcellular complexity: 50 years of trespassing boundaries within the cell. Annu. Rev. Cell Dev. Biol. 21:1–33 [Google Scholar]
  60. Sabatini DD, Bensch K, Barrnett RJ. 1963. Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J. Cell Biol. 17:19–58 [Google Scholar]
  61. Salmon ED. 1975a. Pressure-induced depolymerization of brain microtubules in vitro. Science 189:884–86 [Google Scholar]
  62. Salmon ED. 1975b. Spindle microtubules: thermodynamics of in vivo assembly and role in chromosome movement. Ann. N.Y. Acad. Sci. 253:383–406 [Google Scholar]
  63. Salmon ED. 1976. Pressure-induced depolymerization of spindle microtubules: IV. Production and regulation of chromosome movement. Cold Spring Harbor Conferences on Cell Proliferation—Cell Motility R Goldman, T Pollard, J Rosenbaum 31329–42 New York: Cold Spring Harb. Lab. Press [Google Scholar]
  64. Salmon ED, Ellis GW. 1975. A new miniature hydrostatic pressure chamber for microscopy: Strain-free optical glass windows facilitate phase contrast and polarized light microscopy of living cells. Optional fixture permits simultaneous control of pressure and temperature. J. Cell Biol. 65:587–602 [Google Scholar]
  65. Sato H, Ellis GW, Inoué S. 1975. Microtubular origin of mitotic spindle form birefringence. J. Cell Biol. 67:501–17 [Google Scholar]
  66. Schmidt WJ. 1924. Die Bausteine des Tierkörpers in polarisiertem Lichte Bonn: Cohen [Google Scholar]
  67. Schmidt WJ. 1937. Die Doppelbrechung von Karyoplasma, Zytoplasma und Metaplasma Protoplasma Monographien, Vol. 11 Berlin: Gebrüder Bornträger [Google Scholar]
  68. Schmidt WJ. 1939. Doppelbrechung der Kernspindel und Zugfasertheorie der Chromosomenbewegung. Chromosoma 1:253–64 [Google Scholar]
  69. Schrader F. 1953. Mitosis: The Movement of Chromosomes in Cell Division New York: Columbia Univ. Press [Google Scholar]
  70. Sluder G, Wolf DE. 2003. Digital Microscopy: A Second Edition of Video Microscopy. Methods in Cell Biology 72 San Diego: Academic [Google Scholar]
  71. Summer KE, Gibbons IR. 1971. Adenosine triphosphate-induced sliding of tubules in trypsin-treated flagella of sea-urchin sperm. Proc. Natl. Acad. Sci. USA 68:3092–96 [Google Scholar]
  72. Swann MM, Mitchison JM. 1950. Refinements in polarized light microscopy. J. Exp. Biol. 27:226–37 [Google Scholar]
  73. Tasaki I, Takeuchi T. 1941. Der am Ranvierschen Knoten entstenhende Aktionsstrom und seine Bedeutung für die Erregengsleitung. Pflügers Arch. Physiol. 244:696–711 [Google Scholar]
  74. Taylor EW. 1965. The mechanism of colchicine inhibition of mitosis. I. Kinetics of inhibition and the binding of H3-colchicine. J. Cell Biol. 25:145–60 [Google Scholar]
  75. Telzer BR, Haimo LT. 1981. Decoration of spindle microtubules with dynein: evidence for uniform polarity. J. Cell Biol. 89:373–78 [Google Scholar]
  76. Tilney LG, Hiramoto Y, Marsland D. 1966. Studies of microtubules in Heliozoa. III. A pressure analysis on the role of these structures on the formation and maintenance of the axopodia of Actinosphaerium nucleofilum (Barrett). J. Cell Biol. 29:77–95 [Google Scholar]
  77. Tilney LG, Porter KR. 1967. Studies of microtubules in Heliozoa. II. The effect of low temperature on these structures on the formation and maintenance of the axopodia. J. Cell Biol. 34:327–43 [Google Scholar]
  78. Vale RD, Reese TS, Sheetz MP. 1985. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42:39–50 [Google Scholar]
  79. Wada B. 1950. The mechanism of mitosis based on studies of the submicroscopic structure and of the living state of the Tradescantia cell. Cytologia 16:1–26 [Google Scholar]
  80. Wahlstrom FE. 1960. Optical Crystallography New York: Wiley, 3rd.ed. [Google Scholar]
  81. Waterman-Storer CM, Salmon ED. 1998. How microtubules get fluorescent speckles. Biophys. J. 75:2059–69 [Google Scholar]
  82. Weisenberg RC. 1972. Microtubule formation in vitro in solutions containing low calcium ion concentrations. Science 177:1104–5 [Google Scholar]
  83. Wilson EB. 1928. The Cell in Development and Heredity New York: MacMillan, 3rd.ed. [Google Scholar]
  84. Wittmann T, Hyman T, Desai A. 2001. The spindle: a dynamic assembly of microtubules and motors. Nat. Cell Biol. 3:E28–34 [Google Scholar]
  85. Wright FE. 1911. The Methods of Petrographic-Microscopic Research: Their Relative Accuracy and Range of Application. Washington: Carnegie Inst. [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error