1932

Abstract

Aerosol particles in the atmosphere exert a strong influence on climate by interacting with sunlight and by initiating cloud formation. Because the tropospheric aerosol is a heterogeneous mixture of various particle types, its climate effects can only be fully understood through detailed knowledge of the physical and chemical properties of individual particles. Here we review the results of individual-particle studies that use microscopy-based techniques, emphasizing transmission electron microscopy and focusing on achievements of the past ten years. We discuss the techniques that are best suited for studying distinct particle properties and provide a brief overview of major particle types, their identification, and their sources. The majority of this review is concerned with the optical properties and hygroscopic behavior of aerosol particles; we discuss recent results and highlight the potential of emerging microscopy techniques for analyzing the particle properties that contribute most to climate effects.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.earth.031208.100032
2010-05-30
2024-06-20
Loading full text...

Full text loading...

/deliver/fulltext/earth/38/1/annurev.earth.031208.100032.html?itemId=/content/journals/10.1146/annurev.earth.031208.100032&mimeType=html&fmt=ahah

Literature Cited

  1. Adachi K, Buseck PR. 2008. Internally mixed soot, sulfates, and organic matter in aerosol particles from Mexico City. Atmos. Chem. Phys. 8:6469–81 [Google Scholar]
  2. Adachi K, Chung SH, Friedrich H, Buseck PR. 2007. Fractal parameters of individual soot particles determined using electron tomography: implications for optical properties. J. Geophys. Res. 112:D14202 [Google Scholar]
  3. Albrecht B. 1989. Aerosols, cloud microphysics and fractional cloudiness. Science 245:1227–30 [Google Scholar]
  4. Alexander DTL, Crozier PA, Anderson JR. 2008. Brown carbon spheres in East Asian outflow and their optical properties. Science 321:833–36 [Google Scholar]
  5. Aller JY, Kuznetsova MR, Jahns CJ, Kemp PF. 2005. The sea surface microlayer as a source of viral and bacterial enrichment in marine aerosols. J. Aerosol Sci. 36:801–12 [Google Scholar]
  6. Anastasio C, Martin ST. 2001. Atmospheric nanoparticles. Rev. Mineral. Geochem. 44:293–349 [Google Scholar]
  7. Andreae MO, Gelencsér A. 2006. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos. Chem. Phys. 6:3131–48 [Google Scholar]
  8. Andreae MO, Jones CD, Cox PM. 2005. Strong present-day aerosol cooling implies a hot future. Nature 435:1187–90 [Google Scholar]
  9. Andreae MO, Rosenfeld D. 2008. Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Sci. Rev. 89:13–41 [Google Scholar]
  10. Barkay Z, Teller A, Ganor E, Levin Z, Shapira Y. 2005. Atomic force and scanning electron microscopy of atmospheric particles. Microsc. Res. Tech. 68:107–14 [Google Scholar]
  11. Bauer H, Kasper-Giebl A, Loflund M, Giebl H, Hitzenberger R. et al. 2002. The contribution of bacteria and fungal spores to the organic carbon content of cloud water, precipitation and aerosols. Atmos. Res. 64:109–19 [Google Scholar]
  12. Bigg EK, Leck C. 2008. The composition of fragments of bubbles bursting at the ocean surface. J. Geophys. Res. 113:D11209 [Google Scholar]
  13. Bilde M, Svenningsson B. 2004. CCN activation of slightly soluble organics: the importance of small amounts of inorganic salt and particle phase. Tellus 56:128–34 [Google Scholar]
  14. Blanchard DC, Woodcock AH. 1957. Bubble formation and modification in the sea and its meteorological significance. Tellus 9:145–58 [Google Scholar]
  15. Bond TC, Bergstrom RW. 2006. Light absorption by carbonaceous particles: an investigative review. Aerosol Sci. Technol. 40:1–41 [Google Scholar]
  16. Buseck PR, Adachi K. 2008. Nanoparticles in the atmosphere. Elements 4:389–94 [Google Scholar]
  17. Buseck PR, Jacob DJ, Pósfai M, Li J, Anderson JR. 2002. Minerals in the air: an environmental perspective. Frontiers in Geochemistry: Global Inorganic Geochemistry WG Ernst 106–22 Columbia, MD: Geol. Soc. Am., Bellwether Publ. [Google Scholar]
  18. Buseck PR, Pósfai M. 1999. Airborne minerals and related aerosol particles: effects on climate and the environment. Proc. Natl. Acad. Sci. USA 96:3372–79 [Google Scholar]
  19. Buseck PR, Schwartz SE. 2003. Tropospheric aerosols. Treatise on Geochemistry KK Turekian, HD Holland 91–142 New York: Elsevier Science Ltd. [Google Scholar]
  20. Cantrell W, Heymsfield A. 2005. Production of ice in tropospheric clouds: a review. Bull. Am. Meteorol. Soc. 86:795–807 [Google Scholar]
  21. Choi MY, Chan CK. 2002. The effects of organic species on the hygroscopic behaviors of inorganic aerosols. Environ. Sci. Technol. 36:2422–28 [Google Scholar]
  22. Chylek P, Dubey MK, Lohmann U, Ramanathan V, Kaufman YJ. et al. 2006. Aerosol indirect effect over the Indian Ocean. Geophys. Res. Lett. 33:L06806 doi:10.1029/2005GL025397 [Google Scholar]
  23. Claeys M, Graham B, Vas G, Wang W, Vermeylen R. et al. 2004. Formation of secondary organic aerosols through photooxidation of isoprene. Science 303:1173–76 [Google Scholar]
  24. Cruz CN, Pandis SN. 2000. Deliquescence and hygroscopic growth of mixed inorganic–organic atmospheric aerosol. Environ. Sci. Technol. 34:4313–19 [Google Scholar]
  25. Cwiertny DM, Baltrusaitis J, Hunter GJ, Laskin A, Scherer MM, Grassian VH. 2008. Characterization and acid-mobilization study of iron-containing mineral dust source materials. J. Geophys. Res. 113:D05202 doi:10.1029/2007JD009332 [Google Scholar]
  26. Cziczo DJ, Abbatt JPD. 1999. Deliquescence, efflorescence, and supercooling of ammonium sulfate aerosols at low temperature: implications for cirrus cloud formation and aerosol phase in the atmosphere. J. Geophys. Res. 104:13781–90 [Google Scholar]
  27. Cziczo DJ, DeMott PJ, Brooks SD, Prenni AJ, Thomson DS. et al. 2004. Observations of organic species and atmospheric ice formation. Geophys. Res. Lett. 31:L12116 doi:10.1029/2004GL019822 [Google Scholar]
  28. DeMott PJ, Cziczo DJ, Prenni AJ, Murphy DM, Kreidenweis SM. et al. 2003. Measurements of the concentration and composition of nuclei for cirrus formation. Proc. Natl. Acad. Sci. USA 100:14655–60 [Google Scholar]
  29. Després V, Nowoisky J, Klose M, Conrad R, Andreae MO, Pöschl U. 2007. Characterization of primary biogenic aerosol particles in urban, rural, and high-alpine air by DNA sequence and restriction fragment analysis of ribosomal RNA genes. Biogeosciences 4:1127–41 [Google Scholar]
  30. Ebert M, Inerle-Hof M, Weinbruch S. 2002a. Environmental scanning electron microscopy as a new technique to determine the hygroscopic behaviour of individual aerosol particles. Atmos. Environ. 36:5909–16 [Google Scholar]
  31. Ebert M, Weinbruch S, Hoffmann P, Ortner HM. 2004. The chemical composition and complex refractive index of rural and urban influenced aerosols determined by individual particle analysis. Atmos. Environ. 38:6531–45 [Google Scholar]
  32. Ebert M, Weinbruch S, Rausch A, Gorzawski G, Hoffmann P. et al. 2002b. Complex refractive index of aerosols during LACE 98 as derived from the analysis of individual particles. J. Geophys. Res. 107:D218121 doi:10.1029/2000JD000195 [Google Scholar]
  33. Elbert W, Taylor PE, Andreae MO, Pöschl U. 2007. Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions. Atmos. Chem. Phys. 7:4569–88 [Google Scholar]
  34. Falkovich AH, Ganor E, Levin Z, Formenti P, Rudich Y. 2001. Chemical and mineralogical analysis of individual mineral dust particles. J. Geophys. Res. 106:18029–36 [Google Scholar]
  35. Feingold G, Cotton WR, Kreidenweis SM, Davis JT. 1999. The impact of giant cloud condensation nuclei on drizzle formation in stratocumulus: implications for cloud radiative properties. J. Atmos. Sci. 56:4100–17 [Google Scholar]
  36. Field PR, Möhler O, Connolly P, Krämer M, Cotton R. et al. 2006. Some ice nucleation characteristics of Asian and Saharan desert dust. Atmos. Chem. Phys. Discuss. 6:1509–37 [Google Scholar]
  37. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R. et al. 2007. Changes in atmospheric constituents and radiative forcing. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change S Solomon, D Qin, M Manning, Z Chen, M Marquis , et al., pp. 129–234 Cambridge, UK, and New York: Cambridge Univ. Press [Google Scholar]
  38. Freney EJ, Martin ST, Buseck PR. 2009. Deliquescence and efflorescence of potassium salts relevant to biomass-burning aerosol particles. Aerosol Sci. Technol. 43:799–807 [Google Scholar]
  39. Fuller KA, Malm WC, Kreidenweis SM. 1999. Effects of mixing on extinction by carbonaceous particles. J. Geophys. Res. 104:D1315941–54 [Google Scholar]
  40. Gao Y, Anderson JR, Hua X. 2007. Dust characteristics over the North Pacific observed through shipboard measurements during the ACE-Asia experiment. Atmos. Environ. 41:7907–22 [Google Scholar]
  41. Gelencsér A. 2004. Carbonaceous Aerosol Berlin, Heidelberg, New York: Springer350 [Google Scholar]
  42. Gibson ER, Gierlus KM, Hudson PK, Grassian VH. 2007. Generation of internally mixed insoluble and soluble aerosol particles to investigate the impact of atmospheric aging and heterogeneous processing on the CCN activity of mineral dust aerosol. Aerosol Sci. Technol. 41:914–24 [Google Scholar]
  43. Gwaze P, Annegarn HJ, Huth J, Helas G. 2007. Comparison of particle sizes determined with impactor, AFM and SEM. Atmos. Res. 86:93–104 [Google Scholar]
  44. Hand JL, Malm WC, Laskin A, Day D, Lee T. et al. 2005. Optical, physical, and chemical properties of tar balls observed during the Yosemite Aerosol Characterization Study. J. Geophys. Res. 110:D21210 doi:10.1029/2004JD005728 [Google Scholar]
  45. Hays MD, Vander Wal RL. 2007. Heterogeneous soot nanostructure in atmospheric and combustion source aerosols. Energy Fuels 21:801–11 [Google Scholar]
  46. Hiranuma N, Brooks SD, Auvermann BW, Littleton R. 2008. Using environmental scanning electron microscopy to determine the hygroscopic properties of agricultural aerosols. Atmos. Environ. 42:1983–94 [Google Scholar]
  47. Hoffer A, Gelencsér A, Guyon P, Kiss G, Schmid O. et al. 2006. Optical properties of humic-like substances (HULIS) in biomass-burning aerosols. Atmos. Chem. Phys. 6:3563–70 [Google Scholar]
  48. Hoffman RC, Laskin A, Finlayson-Pitts BJ. 2004. Sodium nitrate particles: physical and chemical properties during hydration and dehydration, and implications for aged sea salt aerosols. J. Aerosol. Sci. 35:869–87 [Google Scholar]
  49. Hopkins RJ, Desyaterik Y, Tivanski AV, Zaveri RA, Berkowitz CM. et al. 2008. Chemical speciation of sulfur in marine cloud droplets and particles: analysis of individual particles from the marine boundary layer over the California current. J. Geophys. Res. 113:D04209 doi:10.1029/2007JD008954 [Google Scholar]
  50. Hopkins RJ, Tivanski AV, Marten BD, Gilles MK. 2007. Chemical bonding and structure of black carbon reference materials and individual carbonaceous atmospheric aerosols. J. Aerosol. Sci. 38:573–91 [Google Scholar]
  51. Hudson PK, Murphy DM, Cziczo DJ, Thomson DS, de Gouw JA. et al. 2004. Biomass-burning particle measurements: characteristics composition and chemical processing. J. Geophys. Res. 109:1–11 [Google Scholar]
  52. Hudson PK, Young MA, Kleiber PD, Grassian VH. 2008. Coupled infrared extinction spectra and size distribution measurements for several non-clay components of mineral dust aerosol (quartz, calcite, and dolomite). Atmos. Environ. 42:5991–99 [Google Scholar]
  53. Jacobson MZ. 2001. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409:695–97 [Google Scholar]
  54. Jacobson MZ. 2002. Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming. J. Geophys. Res. 107:4410 doi:10.1029/2001JD001376 [Google Scholar]
  55. Jickells TD, An ZS, Andersen KK, Baker AR, Bergametti C. et al. 2005. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308:67–71 [Google Scholar]
  56. Johnston MV, Wang S, Reinard MS. 2006. Nanoparticle mass spectrometry: pushing the limit of single particle analysis. Appl. Spectrosc. 60:A264–72 [Google Scholar]
  57. Kalashnikova OV, Sokolik IN. 2002. Importance of shapes and compositions of wind-blown dust particles for remote sensing at solar wavelengths. Geophys. Res. Lett. 29:101398 doi:10.1029/2002GL014947 [Google Scholar]
  58. Kandler K, Benker N, Bundke U, Cuevas E, Ebert M. et al. 2007. Chemical composition and complex refractive index of Saharan Mineral Dust at Izana, Tenerife (Spain) derived by electron microscopy. Atmos. Environ. 41:8058–74 [Google Scholar]
  59. Katrinak KA, Rez P, Buseck PR. 1992. Structural variations in individual carbonaceous particles from an urban aerosol. Environ. Sci. Technol. 26:1967–76 [Google Scholar]
  60. Katrinak KA, Rez P, Perkes PR, Buseck PR. 1993. Fractal geometry of carbonaceous aggregates from an urban aerosol. Environ. Sci. Technol. 27:539–47 [Google Scholar]
  61. Kirchstetter TW, Novakov T. 2007. Controlled generation of black carbon particles from a diffusion flame and applications in evaluating black carbon measurement methods. Atmos. Environ. 41:1874–88 [Google Scholar]
  62. Kirchstetter TW, Novakov T, Hobbs PV. 2004. Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. J. Geophys. Res. 109:D21208 doi:10.1029/2004JD004999 [Google Scholar]
  63. Kis VK, Pósfai M, Lábár JL. 2006. Nanostructure of atmospheric soot particles. Atmos. Environ. 40:5533–42 [Google Scholar]
  64. Kiss G, Tombácz E, Hansson H-C. 2005. Surface tension effects of humic-like substances in the aqueous extract of tropospheric fine aerosol. J. Atmos. Chem. 50:279–94 [Google Scholar]
  65. Kojima T, Buseck PR, Iwasaka Y, Matsuki A, Trochkine D. 2006. Sulfate-coated dust particles in the free troposphere over Japan. Atmos. Res. 82:698–708 [Google Scholar]
  66. Kojima T, Buseck PR, Reeves JM. 2005. Aerosol particles from tropical convective systems: 2. Cloud bases. J. Geophys. Res. 110:1–12 [Google Scholar]
  67. Köllensperger G, Friedbacher G, Kotzick R, Niessner R, Grasserbauer M. 1999. In-situ atomic force microscopy investigation of aerosols exposed to different humidities. Fresenius J. Anal. Chem. 364:296–304 [Google Scholar]
  68. Krueger BJ, Grassian VH, Cowin JP, Laskin A. 2004. Heterogeneous chemistry of individual mineral dust particles from different dust source regions: the importance of particle mineralogy. Atmos. Environ. 38:6253–61 [Google Scholar]
  69. Krueger BJ, Grassian VH, Iedema MJ, Cowin JP, Laskin A. 2003. Probing heterogeneous chemistry of individual atmospheric particles using scanning electron microscopy and energy-dispersive X-ray analysis. Anal. Chem. 75:5170–79 [Google Scholar]
  70. Kulmala M, Vehkamäki H, Petäjä T, Dal Maso M, Lauri A. et al. 2004. Formation and growth rates of ultrafine atmospheric particles: a review of observations. J. Aerosol. Sci. 35:143–76 [Google Scholar]
  71. Laskin A, Wietsma TW, Krueger BJ, Grassian VH. 2005. Heterogeneous chemistry of individual mineral dust particles with nitric acid: a combined CCSEM/EDX, ESEM, and ICP-MS study. J. Geophys. Res. 110:1–15 [Google Scholar]
  72. Leck C, Bigg EK. 2005. Source and evolution of the marine aerosol—a new perspective. Geophys. Res. Lett. 32:1–4 [Google Scholar]
  73. Levin Z, Teller A, Ganor E, Yin Y. 2005. On the interactions of mineral dust, sea-salt particles, and clouds: a measurement and modeling study from the Mediterranean Israeli Dust Experiment campaign. J. Geophys. Res. 110:D20202 doi:10.1029/2005JD005810 [Google Scholar]
  74. Lewis ER, Schwartz SE. 2004. Sea Salt Aerosol Production: Mechanisms, Methods, Measurements, and Models: A Critical Review Washington, D.C.: Am. Geophys. Union.413 [Google Scholar]
  75. Li J, Anderson JR, Buseck PR. 2003a. TEM study of aerosol particles from clean and polluted marine boundary layers over the North Atlantic. J. Geophys. Res. 108:D64189 doi:10.1029/2002JD002106 [Google Scholar]
  76. Li J, Pósfai M, Hobbs PV, Buseck PR. 2003b. Individual aerosol particles from biomass burning in southern Africa: 2. Compositions and aging of inorganic particles. J. Geophys. Res. 108:D138484 doi:10.1029/2002JD002310 [Google Scholar]
  77. Liousse C, Cachier C, Jennings SG. 1993. Optical and thermal measurements of black carbon aerosol content in different environments: variation of the specific attenuation cross-section, sigma (σ). Atmos. Environ. 27:1203–11 [Google Scholar]
  78. Liu X, Penner JE, Herzog M. 2005. Global modeling of aerosol dynamics: model description, evaluation, and interactions between sulfate and nonsulfate aerosols. J. Geophys. Res. 110:1–37 [Google Scholar]
  79. Lohmann U, Feichter H. 2005. Global indirect aerosol effects: a review. Atmos. Chem. Phys. 5:715–37 [Google Scholar]
  80. Maron P-A, Lejon DPH, Carvalho E, Bizet K, Lemanceau P. et al. 2005. Assessing genetic structure and diversity of airborne bacterial communities by DNA fingerprinting and 16S rDNA clone library. Atmos. Environ. 39:3687–95 [Google Scholar]
  81. Mårtensson EM, Nilsson ED, de Leeuw G, Cohen LH, Hansson H-C. 2003. Laboratory simulations and parameterization of the primary marine aerosol production. J. Geophys. Res. 108:D94297 doi:10.1029/2002JD002263 [Google Scholar]
  82. Martin ST. 2000. Phase transitions of aqueous atmospheric particles. Chem. Rev. 100:3403–53 [Google Scholar]
  83. Martins JV, Hobbs PV, Weiss RE, Artaxo P. 1998. Sphericity and morphology of smoke particles from biomass burning in Brazil. J. Geophys. Res. 103:32051–57 [Google Scholar]
  84. Matsuki A, Iwasaka Y, Shi G, Zhang D, Trochkine D. et al. 2005. Morphological and chemical modification of mineral dust: observational insight into the heterogeneous uptake of acidic gases. Geophys. Res. Lett. 32:L22806 doi:10.1029/2005GL024176 [Google Scholar]
  85. Matthias-Maser S, Jaenicke R. 1994. Examination of atmospheric bioaerosol particles with radii >0.2 μm. J. Aerosol. Sci. 25:1605–13 [Google Scholar]
  86. Maynard AD. 1995. The application of electron energy-loss spectroscopy to the analysis of ultrafine aerosol particles. J. Aerosol. Sci. 26:757–77 [Google Scholar]
  87. Middlebrook AM, Murphy DM, Thomson DS. 1998. Observations of organic material in individual marine particles at Cape Grim during the First Aerosol Characterization Experiment (ACE 1). J. Geophys. Res. 103:16475–83 [Google Scholar]
  88. Mishchenko MI, Hovenier JW, Travis LD. 2000. Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications London: Academic640 [Google Scholar]
  89. Möhler O, DeMott PJ, Vali G, Levin Z. 2007. Microbiology and atmospheric processes: the role of biological particles in cloud physics. Biogeosciences 4:1059–71 [Google Scholar]
  90. Morris CE, Sands DC, Bardin M, Jaenicke R, Vogel B. et al. 2008. Microbiology and atmospheric processes: an upcoming era of research on bio-meteorology. Biogeosci. Discuss. 5:191–212 [Google Scholar]
  91. Murphy DM. 2005. Something in the air. Science 307:1888–90 [Google Scholar]
  92. Murphy DM, Anderson JR, Quinn PK, Mclnnes LM, Brechtel FJ. et al. 1998. Influence of sea-salt on aerosol radiative properties in the Southern Ocean marine boundary layer. Nature 392:62–65 [Google Scholar]
  93. Murphy DM, Cziczo DJ, Froyd KD, Hudson PK, Matthew BM. et al. 2006. Single-particle mass spectrometry of tropospheric aerosol particles. J. Geophys. Res. 111:D23S32 doi:10.1029/2006JD007340 [Google Scholar]
  94. Niemi JV, Saarikoski S, Tervahattu H, Mäkelä T, Hillamo R. et al. 2006. Changes in background aerosol composition in Finland during polluted and clean periods studied by TEM/EDX individual particle analysis. Atmos. Chem. Phys. 6:5049–66 [Google Scholar]
  95. Niemi JV, Tervahattu H, Vehkamäki H, Kulmala M, Koskentalo T. et al. 2004. Characterization and source identification of a fine particle episode in Finland. Atmos. Environ. 38:5003–12 [Google Scholar]
  96. Niimura N, Okada K, Fan X-B, Kai K, Arao K. et al. 1998. Formation of Asian dust-storm particles mixed internally with sea salt in the atmosphere. J. Meteorol. Soc. Jpn. 76:275–88 [Google Scholar]
  97. O'Dowd CD, Facchini MC, Cavalli F, Ceburnis D, Mircea M. et al. 2004. Biogenically driven organic contribution to marine aerosol. Nature 431:676–80 [Google Scholar]
  98. O'Dowd CD, Smith MH, Consterdine IE, Lowe JA. 1997. Marine aerosol, sea-salt, and the marine sulphur cycle: a short review. Atmos. Environ. 31:73–80 [Google Scholar]
  99. Okada K, Ikegami M, Zaizen Y, Tsutsumi Y, Makino Y. et al. 2005. Soot particles in the free troposphere over Australia. Atmos. Environ. 39:5079–89 [Google Scholar]
  100. Okada K, Kai K. 2004. Atmospheric mineral particles collected at Qira in the Taklamakan Desert, China. Atmos. Environ. 38:6927–35 [Google Scholar]
  101. Palotas AB, Rainey LC, Feldermann CJ, Sarofim AF, Vander Sande JB. 1996. Soot morphology: an application of image analysis in high-resolution transmission electron microscopy. Microsc. Res. Tech. 33:266–78 [Google Scholar]
  102. Pant A, Fok A, Parsons MT, Mak J, Bertram AK. 2004. Deliquescence and crystallization of ammonium sulfate–glutaric acid and sodium chloride–glutaric acid particles. Geophys. Res. Lett. 31:L12111 doi:10.1029/2004GL020025 [Google Scholar]
  103. Pósfai M, Anderson JR, Buseck PR, Sievering H. 1995. Compositional variations of sea-salt-mode aerosol particles from the North Atlantic. J. Geophys. Res. 100:D1123063–74 [Google Scholar]
  104. Pósfai M, Anderson JR, Buseck PR, Sievering H. 1999. Soot and sulfate aerosol particles in the remote marine troposphere. J. Geophys. Res. 104:21685–93 [Google Scholar]
  105. Pósfai M, Gelencsér A, Simonics R, Arató K, Li J. et al. 2004. Atmospheric tar balls: particles from biomass and biofuel burning. J. Geophys. Res. 109:D06213 doi:10.1029/2003JD004169 [Google Scholar]
  106. Pósfai M, Li J, Anderson JR, Buseck PR. 2003a. Aerosol bacteria over the Southern Ocean during ACE-1. Atmos. Res. 66:231–40 [Google Scholar]
  107. Pósfai M, Molnár A. 2000. Aerosol particles in the troposphere: a mineralogical introduction. Environmental Mineralogy DJ Vaughan, RA Wogelius 197–252 Budapest: Eötvös Univ. Press [Google Scholar]
  108. Pósfai M, Simonics R, Li J, Hobbs PV, Buseck PR. 2003b. Individual aerosol particles from biomass burning in southern Africa: 1. Compositions and size distributions of carbonaceous particles. J. Geophys. Res. 108:8483 doi:10.1029/2002JD002291 [Google Scholar]
  109. Pósfai M, Xu H, Anderson JR, Buseck PR. 1998. Wet and dry sizes of atmospheric aerosol particles: an AFM-TEM study. Geophys. Res. Lett. 25:1907–10 [Google Scholar]
  110. Post JE, Buseck PR. 1984. Characterization of individual particles in the Phoenix urban aerosol using electron-beam instruments. Environ. Sci. Technol. 18:35–42 [Google Scholar]
  111. Prospero JM. 1999. Long-range transport of mineral dust in the global atmosphere: impact of African dust on the environment of the southeastern United States. Proc. Natl. Acad. Sci. USA 96:3396–403 [Google Scholar]
  112. Ramanathan V, Carmichael G. 2008. Global and regional climate changes due to black carbon. Nat. Geosci. 1:221–27 [Google Scholar]
  113. Ramanathan V, Ramana MV, Roberts G, Kim D, Corrigan C. et al. 2007. Warming trends in Asia amplified by brown cloud solar absorption. Nature 448:575–78 [Google Scholar]
  114. Ramirez-Aguilar KA, Lehmpuhl DW, Michel AE, Birks JW, Rowlen KL. 1999. Atomic force microscopy for the analysis of environmental particles. Ultramicroscopy 77:187–94 [Google Scholar]
  115. Reid JS, Koppmann R, Eck TF, Eleuterio DP. 2005. A review of biomass burning emissions part II: intensive physical properties of biomass burning particles. Atmos. Chem. Phys. 5:799–825 [Google Scholar]
  116. Russell LM, Maria SF, Myneni SCB. 2002. Mapping organic coatings on atmospheric particles. Geophys. Res. Lett. 29:161779 doi:10.1029/2002GL014874 [Google Scholar]
  117. Sattler B, Puxbaum H, Psenner R. 2001. Bacterial growth in supercooled cloud droplets. Geophys. Res. Lett. 28:243–46 [Google Scholar]
  118. Schnaiter M, Linke C, Möhler O, Naumann K-H, Saathoff H. et al. 2005. Absorption amplification of black carbon internally mixed with secondary organic aerosol. J. Geophys. Res. 110:D19204 doi:10.1029/2005JD006046 [Google Scholar]
  119. Schwarz JP, Spackman JR, Fahey DW, Gao RS, Lohmann U. et al. 2008. Coatings and their enhancement of black carbon light absorption in the tropical atmosphere. J. Geophys. Res. 113:D03203 doi:10.1029/2007JD009042 [Google Scholar]
  120. Seinfeld JH, Pandis SN. 2006. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change New York: Wiley1232, 2nd. [Google Scholar]
  121. Semeniuk TA, Wise ME, Martin ST, Russell LM, Buseck PR. 2007a. Hygroscopic behavior of aerosol particles from biomass fires using environmental transmission electron microscopy. J. Atmos. Chem. 56:259–73 [Google Scholar]
  122. Semeniuk TA, Wise ME, Martin ST, Russell LM, Buseck PR. 2007b. Water uptake characteristics of individual atmospheric particles having coatings. Atmos. Environ. 41:6225–35 [Google Scholar]
  123. Shi Z, Zhang D, Hayashi M, Ogata H, Ji H, Fujiie W. 2008. Influences of sulfate and nitrate on the hygroscopic behaviour of coarse dust particles. Atmos. Environ. 42:822–27 [Google Scholar]
  124. Smekens A, Godoi RHM, Vervoort M, Van Espen P, Potgieter-Vermaak SS, Van Grieken R. 2007. Characterization of individual soot aggregates from different sources using image analysis. J. Atmos. Chem. 56:211–23 [Google Scholar]
  125. Smith JN, Dunn MJ, VanReken TM, Iida K, Stolzenburg MR. et al. 2008. Chemical composition of atmospheric nanoparticles formed from nucleation in Tecamac, Mexico: evidence for an important role for organic species in nanoparticle growth. Geophys. Res. Lett. 35:L04808 doi:10.1029/2007GL032523 [Google Scholar]
  126. Sobanska S, Coeur C, Maenhaut W, Adams F. 2003. SEM-EDX characterisation of trophospheric aerosols in the Negev desert (Israel). J. Atmos. Chem. 44:299–322 [Google Scholar]
  127. Sorensen CM. 2001. Light scattering by fractal aggregates: a review. Aerosol Sci. Technol. 35:648–87 [Google Scholar]
  128. Sun J, Ariya PA. 2006. Atmospheric organic and bio-aerosols as cloud condensation nuclei (CCN): a review. Atmos. Environ. 40:795–820 [Google Scholar]
  129. Sze S-K, Siddique N, Sloan JJ, Escribano R. 2001. Raman spectroscopic characterization of carbonaceous aerosols. Atmos. Environ. 35:561–68 [Google Scholar]
  130. Takahama S, Gilardoni S, Russell LM, Kilcoyne ALD. 2007. Classification of multiple types of organic carbon composition in atmospheric particles by scanning transmission X-ray microscopy analysis. Atmos. Environ. 41:9435–51 [Google Scholar]
  131. Targino AC, Krejci R, Noone KJ, Glantz P. 2006. Single particle analysis of ice crystal residuals observed in orographic wave clouds over Scandinavia during INTACC experiment. Atmos. Chem. Phys. 6:1977–90 [Google Scholar]
  132. Tivanski AV, Hopkins RJ, Tyliszczak T, Gilles MK. 2007. Oxygenated interface on biomass burn tar balls determined by single particle scanning transmission X-ray microscopy. J. Phys. Chem. A 111:5448–58 [Google Scholar]
  133. Travis DJ, Carleton AM, Lauritsen RG. 2002. Contrails reduce daily temperature range. Nature 418:601 [Google Scholar]
  134. Trochkine D, Iwasaka Y, Matsuki A, Yamada M, Kim Y-S. et al. 2003. Mineral aerosol particles collected in Dunhuang, China, and their comparison with chemically modified particles collected over Japan. J. Geophys. Res. 108:D238642 doi:10.1029/2002JD003268 [Google Scholar]
  135. Tsigaridis K, Kanakidou M. 2007. Secondary organic aerosol importance in the future atmosphere. Atmos. Environ. 41:4682–92 [Google Scholar]
  136. Twohy CH, Anderson JR, Crozier PA. 2005. Nitrogenated organic aerosols as cloud condensation nuclei. Geophys. Res. Lett. 32:L19805 doi:10.1029/2005GL023605 [Google Scholar]
  137. Twohy CH, Gandrud BW. 1998. Electron microscope analysis of residual particles from aircraft contrails. Geophys. Res. Lett. 25:1359–62 [Google Scholar]
  138. Twomey SA. 1977. The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci. 34:1149–52 [Google Scholar]
  139. Vali G. 1985. Atmospheric ice nucleation—a review. J. Rech. Atmos. 19:105–15 [Google Scholar]
  140. van Poppel LH, Friedrich H, Spinsby J, Chung SH, Seinfeld JH, Buseck PR. 2005. Electron tomography of nanoparticle clusters: implications for atmospheric lifetimes and radiative forcing of soot. Geophys. Res. Lett. 32:L24811 doi:10.1029/2005GL024461 [Google Scholar]
  141. Wang J, Jacob DJ, Martin ST. 2008. Sensitivity of sulfate direct climate forcing to the hysteresis of particle phase transitions. J. Geophys. Res. 113:D11207 doi:10.1029/2007JD009368 [Google Scholar]
  142. Wentzel M, Gorzawski H, Naumann KH, Saathoff H, Weinbruch S. 2003. Transmission electron microscopical and aerosol dynamical characterization of soot aerosols. J. Aerosol. Sci. 34:1347–70 [Google Scholar]
  143. Wild M, Ohmura A, Makowski K. 2007. Impact of global dimming and brightening on global warming. Geophys. Res. Lett. 34:L04702 doi:10.1029/2006GL028031 [Google Scholar]
  144. Winiwarter W, Bauer H, Caseiro A, Puxbaum H. 2009. Quantifying emissions of primary biological aerosol particle mass in Europe. Atmos. Environ. 43:71403–9 [Google Scholar]
  145. Winterholler B, Hoppe P, Huth J, Foley S, Andreae MO. 2008. Sulfur isotope analyses of individual aerosol particles in the urban aerosol at a central European site (Mainz, Germany). Atmos. Chem. Phys. Discuss. 8:9347–404 [Google Scholar]
  146. Wise ME, Biskos G, Martin ST, Russell LM, Buseck PR. 2005. Phase transitions of single salt particles studied using a transmission electron microscope with an environmental cell. Aerosol Sci. Technol. 39:849–56 [Google Scholar]
  147. Wise ME, Semeniuk TA, Bruintjes R, Martin ST, Russell LM, Buseck PR. 2007. Hygroscopic behavior of NaCl-bearing natural aerosol particles using environmental transmission electron microscopy. J. Geophys. Res. 112:D10224 doi:10.1029/2006JD007678 [Google Scholar]
  148. Wurzler S, Reisin TG, Levin Z. 2000. Modification of mineral dust particles by cloud processing and subsequent effects on drop size distributions. J. Geophys. Res. 105:4501–12 [Google Scholar]
  149. Yu H, Kaufman YJ, Chin M, Feingold G, Remer LA. et al. 2006. A review of measurement-based assessments of the aerosol direct radiative effect and forcing. Atmos. Chem. Phys. 6:613–66 [Google Scholar]
  150. Zangmeister CD, Pemberton JE. 2000. Raman spectroscopy and atomic force microscopy of the reaction of sulfuric acid with sodium chloride. J. Am. Chem. Soc. 122:12289–96 [Google Scholar]
  151. Zhang R, Suh I, Zhao J, Zhang D, Fortner EC. et al. 2004. Atmospheric new particle formation enhanced by organic acids. Science 304:1487–90 [Google Scholar]
  152. Zimmermann F, Ebert M, Worringen A, Schütz L, Weinbruch S. 2007. Environmental scanning electron microscopy (ESEM) as a new technique to determine the ice nucleation capability of individual atmospheric aerosol particles. Atmos. Environ. 41:8219–27 [Google Scholar]
/content/journals/10.1146/annurev.earth.031208.100032
Loading
/content/journals/10.1146/annurev.earth.031208.100032
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error