Full text loading...
Abstract
Recent advances in computational physics allow numerical simulation of three-dimensional complex flows through arbitrarily complex geometries. Moreover, new technology for noninvasive imaging provides detailed three-dimensional tomographic reconstructions of porous rocks with a resolution approaching one micron. These two innovations are leading to new understanding of how the microscopic complexity of natural porous media influences fluid transport at a larger, macroscopic scale. This review describes new insights concerning single-phase and multiphase porous flow derived from numerical simulation. In particular, results concerning scaling relations between macroscopic parameters, the scale dependence of transport properties, and viscous coupling in multicomponent flow are emphasized.