1932

There is no abstract available.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.earth.30.100301.083856
2002-05-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/earth/30/1/annurev.earth.30.100301.083856.html?itemId=/content/journals/10.1146/annurev.earth.30.100301.083856&mimeType=html&fmt=ahah

Literature Cited

  1. Aki K. 1996. Scale dependence in earthquake phenomena and its relevance to earthquake prediction.. Proc. Natl. Acad. Sci. USA 93:3748–55 [Google Scholar]
  2. Alekseevskaya M, Gabrielov A, Gelfand I, Gvishiani A, Rantsman E. 1977. Formal morphostructural zoning of mountain territories.. J. Geophys. 43:227–33 [Google Scholar]
  3. Barenblatt GI, Keilis-Borok VI, Monin AS. 1983. Filtration model of earthquake sequence.. Dokl. Akad. Nauk SSSR 269(4):831–34 (In Russian [Google Scholar]
  4. Bowman DD, Ouillon G, Sammis CG, Sornette A, Sornette D. 1998. An observational test of the critical earthquake concept.. J. Geophys. Res. 103:24359–72 [Google Scholar]
  5. Bufe CG, Varnes DJ. 1993. Predictive modeling of the seismic cycle of the greater San Francisco bay region J. Geophys. Res. 98:9871–83
  6. Caputo M, Console R, Gabrielov AM, Keilis-Borok VI, Sidorenko TV. 1983. Long-term premonitory seismicity patterns in Italy.. Geophys. J. R. Astron. Soc. 75:71–75 [Google Scholar]
  7. Crutchfield JP, Farmer JD, Packard NH, Shaw RS. 1986. Chaos Sci. Am. 255:46–57
  8. Gabrielov A, Keilis-Borok VI, Jackson DD. 1996. Geometric incompatibility in a fault system.. Proc. Natl. Acad. Sci. USA 93(9):3838–42 [Google Scholar]
  9. Gabrielov AM, Caputo M, Keilis-Borok VI, Console R, Sidorenko TV. 1983. Long-term premonitory seismicity patterns in Italy.. Geophys. J. R. Astron. Soc. 75:71–75 [Google Scholar]
  10. Gabrielov AM, Keilis-Borok VI. 1983. Patterns of stress corrosion: geometry of the principal stresses Pure Appl. Geophys. 121477–94
  11. Gabrielov AM, Zaliapin IV, Newman WI, Keilis-Borok VI. 2000. Colliding cascades model for earthquake prediction.. J. Geophys. Int. 143:427–37 [Google Scholar]
  12. Gelfand IM, Guberman ShA, Keilis-Borok VI, Knopoff L, Press F. et al. 1976. Pattern recognition applied to earthquake epicenters in California.. Phys. Earth Planet. Inter. 11:227–83 [Google Scholar]
  13. Gell-Mann M. 1994. The Quark and the Jaguar: Adventures in the Simple and the Complex. New York: Freeman [Google Scholar]
  14. Gorshkov AI, Kossobokov VG, Rantsman EYa, Soloviev AA. 2001. Recognition of earthquake prone areas: validity of results obtained from 1972 to 2000.. Vych. Seism. 32:48–57 [Google Scholar]
  15. Holland JH. 1995. Hidden Order: How Adaptation Builds Complexity. Reading, MA: Addison-Wesley [Google Scholar]
  16. Kantorovich LV, Keilis-Borok VI. 1991. Earthquake prediction and decision-making: social, economic and civil protection aspects.. In Int. Conf. Earthquake Prediction: State-of-the-Art, Strasbourg, Fr., Sci.-Tech. Contrib., CSEM-EMSC 586–93
  17. Keilis-Borok VI. 1990a. The lithosphere of the Earth as a non-linear system with implications for earthquake prediction.. Rev. Geophys. 28(1):19–34 (Transl. into Chinese [Google Scholar]
  18. Keilis-Borok VI. ed 1990b. Intermediate-term earthquake prediction: models, phenomenology, worldwide tests.. Phys. Earth Planet. Inter. 61:1–144 [Google Scholar]
  19. Keilis-Borok VI, Knopoff L, Rotwain IM. 1980. Bursts of aftershocks, long-term precursors of strong earthquakes.. Nature 283:258–63 [Google Scholar]
  20. Keilis-Borok VI, Kossobokov VG. 1990. Premonitory activation of earthquake flow: algorithm M8.. Phys. Earth Planet. Inter. 61:73–83 [Google Scholar]
  21. Keilis-Borok VI, Malinovskaya LN. 1964. One regularity in the occurrence of strong earthquakes.. J. Geophys. Res. 69(14):3019–24 [Google Scholar]
  22. Keilis-Borok VI, Press F. 1980. On seismological applications of pattern recognition. In Source Mechanism and Earthquake Prediction Applications, ed. CJ Allegre 51–60 Paris: Ed. Cent. Natl. Rech. Sci
  23. Keilis-Borok VI, Rotwain IM. 1990. Diagnosis of time of increased probability of strong earthquakes in different regions of the world: algorithm CN.. Phys. Earth Planet. Inter. 61:57–72 [Google Scholar]
  24. Keilis-Borok VI, Shebalin PN. eds 1999. Dynamics of lithosphere and earthquake prediction.. Phys. Earth Planet. Inter. 111:179–330 [Google Scholar]
  25. King GCP. 1983. The accommodation of large strain in the upper lithosphere of the Earth and other solids by self-similar fault systems: the geometrical origin of b-value.. Pure Appl. Geophys. 121:761–815 [Google Scholar]
  26. Knopoff L, Levshina T, Keilis-Borok VI, Mattoni C. 1996. Increased long-range intermediate-magnitude earthquake activity prior to strong earthquakes in California.. J. Geophys. Res. 101:5779–96 [Google Scholar]
  27. Kossobokov VG, Carlson JM. 1995. Active zone size vs. activity.. A study of different seismicity patterns in the context of prediction algorithm M8 J. Geophys. Res. 100:6431–41 [Google Scholar]
  28. Kossobokov VG, Keilis-Borok VI, Cheng B. 2000. Similarities of multiple fracturing on a neutron star and on the Earth.. Phys. Rev. E 61(4):3529–33 [Google Scholar]
  29. Kossobokov VG, Keilis-Borok VI, Smith SW. 1990. Localization of intermediate-term earthquake prediction.. J. Geophys. Res. 95:19763–72 [Google Scholar]
  30. Kossobokov VG, Romashkova LL, Keilis-Borok VI, Healy JH. 1999. Testing earthquake prediction algorithms: statistically significant advance prediction of the largest earthquakes in the Circum-Pacific, 1992–1997.. Phys. Earth Planet. Inter. 111:187–96 [Google Scholar]
  31. Levshina T, Vorobieva I. 1992. Application of algorithm for prediction of a strong repeated earthquake to the Joshua Tree and Landers earthquakes.. EOS, Trans. Am. Goephys. Union 73:382 [Google Scholar]
  32. McKenzie DP, Morgan WJ. 1969. Evolution of triple junctions.. Nature 224:125–33 [Google Scholar]
  33. McKenzie DP, Parker RL. 1967. The North Pacific: an example of tectonics on a sphere.. Nature 216:1276–80 [Google Scholar]
  34. Molchan GM. 1997. Earthquake prediction as a decision-making problem.. Pure Appl. Geophys. 149:233–47 [Google Scholar]
  35. Molchan GM, Dmitrieva OE, Rotwain IM, Dewey J. 1990. Statistical analysis of the results of earthquake prediction, based on burst of aftershocks.. Phys. Earth Planet. Inter. 61:128–39 [Google Scholar]
  36. Narkunskaya GS, Shnirman MG. 1994. An algorithm of earthquake prediction. In Computational Seismology and Geodynamics 120–24 Washington, DC: Am. Geophys. Union
  37. Newman WI, Gabrielov A, Turcotte DL. eds 1994. Nonlinear Dynamics and Predictability of Geophysical Phenomena.. Geophys. Monogr. Ser. 83. Washington, DC: Am. Geophys. Union [Google Scholar]
  38. Newman WI, Turcotte DL, Gabrielov A. 1995. Log-periodic behavior of a hierarchical failure model with applications to precursory seismic activation.. Phys. Rev. E 52:4827–35 [Google Scholar]
  39. Pepke GF, Carlson JM, Shaw BE. 1994. Prediction of large events on a dynamical model of fault.. J. Geophys. Res. 99:6769–88 [Google Scholar]
  40. Press A, Allen C. 1995. Pattern of seismic release in the southern California region.. J. Geophys. Res. 100:6421–30 [Google Scholar]
  41. Prozorov AG, Schreider SYu. 1990. Real time test of the long-range aftershock algorithm as a tool for mid-term earthquake prediction in Southern California.. Pure Appl. Geophys. 133:329–47 [Google Scholar]
  42. Richter CF. 1964. Discussion of paper by VI Keilis-Borok and LN Malinovskaya, “One regularity in the occurrence of strong earthquakes.”. J. Geophys. Res. 69(14):3025 [Google Scholar]
  43. Romanowicz B. 1993. Spatiotemporal patterns in the energy-release of great earthquakes.. Science 260:1923–26 [Google Scholar]
  44. Romashkova LL, Kossobokov VG. 2001. Seismicity dynamics prior to and after the largest earthquakes worldwide 1985–2000.. Vych. Seism. 32:162–89 [Google Scholar]
  45. Rotwain I, Keilis-Borok V, Botvina L. 1997. Premonitory transformation of steel fracturing and seismicity.. Phys. Earth Planet. Inter. 101:61–71 [Google Scholar]
  46. Rundle BJ, Turcotte DL, Klein W. eds 2000. Geocomplexity and the Physics of Earthquakes. Washington, DC: Am. Geophys. Union [Google Scholar]
  47. Shebalin P, Zaliapin I, Keilis-Borok V. 2000. Premonitory raise of the earthquakes' correlation range: Lesser Antilles.. Phys. Earth Planet. Inter. 122:241–49 [Google Scholar]
  48. Shebalin PN, Keilis-Borok VI. 1999. Phenomenon of local “seismic reversal” before strong earthquakes.. Phys. Earth Planet Inter. 111:215–27 [Google Scholar]
  49. Shreider SYu. 1999. Formal definition of premonitory seismic quiescence.. Phys. Earth Planet. Inter. 61:113–27 [Google Scholar]
  50. Soloviev A, Vorobieva I. 1999. Long-range interaction between synthetic earthquakes in the model of block structure dynamics.. 5th Workshop Non-Linear Dyn. Earthquake Prediction, 4–22 Oct. Trieste: ICTP, Preprint H4. SMR/1150-4 18 pp.
  51. Sornette D. 2000. Critical Phenomena in Natural Sciences.. Chaos, Fractals, Self-organization and Disorder: Concepts & Tools. Springer Ser. Synerg., Heidelberg. New York: Springer-Verlag 432 pp.
  52. Sornette D, Sammis CG. 1995. Complex critical exponents from renormalization group theory of earthquakes: implications for earthquake predictions. J. Phys. I 5:607–19 [Google Scholar]
  53. Turcotte DL. 1997. Fractals and Chaos in Geology and Geophysics. Cambridge: Cambridge Univ. Press. 2nd ed [Google Scholar]
  54. Vorobieva IA. 1999. Prediction of a subsequent strong earthquake.. Phys. Earth Planet. Inter. 111:197–206 [Google Scholar]
  55. Vorobieva IA, Levshina TA. 1994. Prediction of a second large earthquake based on aftershock sequence. In Computational Seismology and Geodynamics 227–36 Washington, DC: Am. Geophys. Union
  56. Wyss M, Habermann RE. 1987. Precursory seismic quiescence.. Physical and observational basis for intermediate-term earthquake prediction US Geol. Surv. Open-File Rep. 2:526–36 [Google Scholar]
  57. Zaliapin I, Keilis-Borok VI, Axen G. 2002. Premonitory spreading of seismicity over the fault network in S. California: precursor accord.. J. Geophys. Res. In press [Google Scholar]
  58. Zaliapin I, Keilis-Borok VI, Ghil M. 2001. Boolean delay model of colliding cascades.. II: Prediction of critical transitions J. Stat. Phys. Submitted [Google Scholar]
  59. Zoeller G, Hainzl S, Kurths J. 2001. Observation of growing correlation length as an indicator for critical point behavior prior to large earthquakes.. J. Geophys. Res. 106:2167–76 [Google Scholar]
  60. Zhurkov SN. 1968. Kinetic concept for strength of solids.. Vestn. Akad. Nauk SSSR 3:46–52 [Google Scholar]
/content/journals/10.1146/annurev.earth.30.100301.083856
Loading
/content/journals/10.1146/annurev.earth.30.100301.083856
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error