There is no abstract available.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aki K. 1996. Scale dependence in earthquake phenomena and its relevance to earthquake prediction.. Proc. Natl. Acad. Sci. USA 93:3748–55 [Google Scholar]
  2. Alekseevskaya M, Gabrielov A, Gelfand I, Gvishiani A, Rantsman E. 1977. Formal morphostructural zoning of mountain territories.. J. Geophys. 43:227–33 [Google Scholar]
  3. Barenblatt GI, Keilis-Borok VI, Monin AS. 1983. Filtration model of earthquake sequence.. Dokl. Akad. Nauk SSSR 269(4):831–34 (In Russian [Google Scholar]
  4. Bowman DD, Ouillon G, Sammis CG, Sornette A, Sornette D. 1998. An observational test of the critical earthquake concept.. J. Geophys. Res. 103:24359–72 [Google Scholar]
  5. Bufe CG, Varnes DJ. 1993. Predictive modeling of the seismic cycle of the greater San Francisco bay region J. Geophys. Res. 98:9871–83
  6. Caputo M, Console R, Gabrielov AM, Keilis-Borok VI, Sidorenko TV. 1983. Long-term premonitory seismicity patterns in Italy.. Geophys. J. R. Astron. Soc. 75:71–75 [Google Scholar]
  7. Crutchfield JP, Farmer JD, Packard NH, Shaw RS. 1986. Chaos Sci. Am. 255:46–57
  8. Gabrielov A, Keilis-Borok VI, Jackson DD. 1996. Geometric incompatibility in a fault system.. Proc. Natl. Acad. Sci. USA 93(9):3838–42 [Google Scholar]
  9. Gabrielov AM, Caputo M, Keilis-Borok VI, Console R, Sidorenko TV. 1983. Long-term premonitory seismicity patterns in Italy.. Geophys. J. R. Astron. Soc. 75:71–75 [Google Scholar]
  10. Gabrielov AM, Keilis-Borok VI. 1983. Patterns of stress corrosion: geometry of the principal stresses Pure Appl. Geophys. 121477–94
  11. Gabrielov AM, Zaliapin IV, Newman WI, Keilis-Borok VI. 2000. Colliding cascades model for earthquake prediction.. J. Geophys. Int. 143:427–37 [Google Scholar]
  12. Gelfand IM, Guberman ShA, Keilis-Borok VI, Knopoff L, Press F. et al. 1976. Pattern recognition applied to earthquake epicenters in California.. Phys. Earth Planet. Inter. 11:227–83 [Google Scholar]
  13. Gell-Mann M. 1994. The Quark and the Jaguar: Adventures in the Simple and the Complex. New York: Freeman [Google Scholar]
  14. Gorshkov AI, Kossobokov VG, Rantsman EYa, Soloviev AA. 2001. Recognition of earthquake prone areas: validity of results obtained from 1972 to 2000.. Vych. Seism. 32:48–57 [Google Scholar]
  15. Holland JH. 1995. Hidden Order: How Adaptation Builds Complexity. Reading, MA: Addison-Wesley [Google Scholar]
  16. Kantorovich LV, Keilis-Borok VI. 1991. Earthquake prediction and decision-making: social, economic and civil protection aspects.. In Int. Conf. Earthquake Prediction: State-of-the-Art, Strasbourg, Fr., Sci.-Tech. Contrib., CSEM-EMSC 586–93
  17. Keilis-Borok VI. 1990a. The lithosphere of the Earth as a non-linear system with implications for earthquake prediction.. Rev. Geophys. 28(1):19–34 (Transl. into Chinese [Google Scholar]
  18. Keilis-Borok VI. ed 1990b. Intermediate-term earthquake prediction: models, phenomenology, worldwide tests.. Phys. Earth Planet. Inter. 61:1–144 [Google Scholar]
  19. Keilis-Borok VI, Knopoff L, Rotwain IM. 1980. Bursts of aftershocks, long-term precursors of strong earthquakes.. Nature 283:258–63 [Google Scholar]
  20. Keilis-Borok VI, Kossobokov VG. 1990. Premonitory activation of earthquake flow: algorithm M8.. Phys. Earth Planet. Inter. 61:73–83 [Google Scholar]
  21. Keilis-Borok VI, Malinovskaya LN. 1964. One regularity in the occurrence of strong earthquakes.. J. Geophys. Res. 69(14):3019–24 [Google Scholar]
  22. Keilis-Borok VI, Press F. 1980. On seismological applications of pattern recognition. In Source Mechanism and Earthquake Prediction Applications, ed. CJ Allegre 51–60 Paris: Ed. Cent. Natl. Rech. Sci
  23. Keilis-Borok VI, Rotwain IM. 1990. Diagnosis of time of increased probability of strong earthquakes in different regions of the world: algorithm CN.. Phys. Earth Planet. Inter. 61:57–72 [Google Scholar]
  24. Keilis-Borok VI, Shebalin PN. eds 1999. Dynamics of lithosphere and earthquake prediction.. Phys. Earth Planet. Inter. 111:179–330 [Google Scholar]
  25. King GCP. 1983. The accommodation of large strain in the upper lithosphere of the Earth and other solids by self-similar fault systems: the geometrical origin of b-value.. Pure Appl. Geophys. 121:761–815 [Google Scholar]
  26. Knopoff L, Levshina T, Keilis-Borok VI, Mattoni C. 1996. Increased long-range intermediate-magnitude earthquake activity prior to strong earthquakes in California.. J. Geophys. Res. 101:5779–96 [Google Scholar]
  27. Kossobokov VG, Carlson JM. 1995. Active zone size vs. activity.. A study of different seismicity patterns in the context of prediction algorithm M8 J. Geophys. Res. 100:6431–41 [Google Scholar]
  28. Kossobokov VG, Keilis-Borok VI, Cheng B. 2000. Similarities of multiple fracturing on a neutron star and on the Earth.. Phys. Rev. E 61(4):3529–33 [Google Scholar]
  29. Kossobokov VG, Keilis-Borok VI, Smith SW. 1990. Localization of intermediate-term earthquake prediction.. J. Geophys. Res. 95:19763–72 [Google Scholar]
  30. Kossobokov VG, Romashkova LL, Keilis-Borok VI, Healy JH. 1999. Testing earthquake prediction algorithms: statistically significant advance prediction of the largest earthquakes in the Circum-Pacific, 1992–1997.. Phys. Earth Planet. Inter. 111:187–96 [Google Scholar]
  31. Levshina T, Vorobieva I. 1992. Application of algorithm for prediction of a strong repeated earthquake to the Joshua Tree and Landers earthquakes.. EOS, Trans. Am. Goephys. Union 73:382 [Google Scholar]
  32. McKenzie DP, Morgan WJ. 1969. Evolution of triple junctions.. Nature 224:125–33 [Google Scholar]
  33. McKenzie DP, Parker RL. 1967. The North Pacific: an example of tectonics on a sphere.. Nature 216:1276–80 [Google Scholar]
  34. Molchan GM. 1997. Earthquake prediction as a decision-making problem.. Pure Appl. Geophys. 149:233–47 [Google Scholar]
  35. Molchan GM, Dmitrieva OE, Rotwain IM, Dewey J. 1990. Statistical analysis of the results of earthquake prediction, based on burst of aftershocks.. Phys. Earth Planet. Inter. 61:128–39 [Google Scholar]
  36. Narkunskaya GS, Shnirman MG. 1994. An algorithm of earthquake prediction. In Computational Seismology and Geodynamics 120–24 Washington, DC: Am. Geophys. Union
  37. Newman WI, Gabrielov A, Turcotte DL. eds 1994. Nonlinear Dynamics and Predictability of Geophysical Phenomena.. Geophys. Monogr. Ser. 83. Washington, DC: Am. Geophys. Union [Google Scholar]
  38. Newman WI, Turcotte DL, Gabrielov A. 1995. Log-periodic behavior of a hierarchical failure model with applications to precursory seismic activation.. Phys. Rev. E 52:4827–35 [Google Scholar]
  39. Pepke GF, Carlson JM, Shaw BE. 1994. Prediction of large events on a dynamical model of fault.. J. Geophys. Res. 99:6769–88 [Google Scholar]
  40. Press A, Allen C. 1995. Pattern of seismic release in the southern California region.. J. Geophys. Res. 100:6421–30 [Google Scholar]
  41. Prozorov AG, Schreider SYu. 1990. Real time test of the long-range aftershock algorithm as a tool for mid-term earthquake prediction in Southern California.. Pure Appl. Geophys. 133:329–47 [Google Scholar]
  42. Richter CF. 1964. Discussion of paper by VI Keilis-Borok and LN Malinovskaya, “One regularity in the occurrence of strong earthquakes.”. J. Geophys. Res. 69(14):3025 [Google Scholar]
  43. Romanowicz B. 1993. Spatiotemporal patterns in the energy-release of great earthquakes.. Science 260:1923–26 [Google Scholar]
  44. Romashkova LL, Kossobokov VG. 2001. Seismicity dynamics prior to and after the largest earthquakes worldwide 1985–2000.. Vych. Seism. 32:162–89 [Google Scholar]
  45. Rotwain I, Keilis-Borok V, Botvina L. 1997. Premonitory transformation of steel fracturing and seismicity.. Phys. Earth Planet. Inter. 101:61–71 [Google Scholar]
  46. Rundle BJ, Turcotte DL, Klein W. eds 2000. Geocomplexity and the Physics of Earthquakes. Washington, DC: Am. Geophys. Union [Google Scholar]
  47. Shebalin P, Zaliapin I, Keilis-Borok V. 2000. Premonitory raise of the earthquakes' correlation range: Lesser Antilles.. Phys. Earth Planet. Inter. 122:241–49 [Google Scholar]
  48. Shebalin PN, Keilis-Borok VI. 1999. Phenomenon of local “seismic reversal” before strong earthquakes.. Phys. Earth Planet Inter. 111:215–27 [Google Scholar]
  49. Shreider SYu. 1999. Formal definition of premonitory seismic quiescence.. Phys. Earth Planet. Inter. 61:113–27 [Google Scholar]
  50. Soloviev A, Vorobieva I. 1999. Long-range interaction between synthetic earthquakes in the model of block structure dynamics.. 5th Workshop Non-Linear Dyn. Earthquake Prediction, 4–22 Oct. Trieste: ICTP, Preprint H4. SMR/1150-4 18 pp.
  51. Sornette D. 2000. Critical Phenomena in Natural Sciences.. Chaos, Fractals, Self-organization and Disorder: Concepts & Tools. Springer Ser. Synerg., Heidelberg. New York: Springer-Verlag 432 pp.
  52. Sornette D, Sammis CG. 1995. Complex critical exponents from renormalization group theory of earthquakes: implications for earthquake predictions. J. Phys. I 5:607–19 [Google Scholar]
  53. Turcotte DL. 1997. Fractals and Chaos in Geology and Geophysics. Cambridge: Cambridge Univ. Press. 2nd ed [Google Scholar]
  54. Vorobieva IA. 1999. Prediction of a subsequent strong earthquake.. Phys. Earth Planet. Inter. 111:197–206 [Google Scholar]
  55. Vorobieva IA, Levshina TA. 1994. Prediction of a second large earthquake based on aftershock sequence. In Computational Seismology and Geodynamics 227–36 Washington, DC: Am. Geophys. Union
  56. Wyss M, Habermann RE. 1987. Precursory seismic quiescence.. Physical and observational basis for intermediate-term earthquake prediction US Geol. Surv. Open-File Rep. 2:526–36 [Google Scholar]
  57. Zaliapin I, Keilis-Borok VI, Axen G. 2002. Premonitory spreading of seismicity over the fault network in S. California: precursor accord.. J. Geophys. Res. In press [Google Scholar]
  58. Zaliapin I, Keilis-Borok VI, Ghil M. 2001. Boolean delay model of colliding cascades.. II: Prediction of critical transitions J. Stat. Phys. Submitted [Google Scholar]
  59. Zoeller G, Hainzl S, Kurths J. 2001. Observation of growing correlation length as an indicator for critical point behavior prior to large earthquakes.. J. Geophys. Res. 106:2167–76 [Google Scholar]
  60. Zhurkov SN. 1968. Kinetic concept for strength of solids.. Vestn. Akad. Nauk SSSR 3:46–52 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error