1932

Abstract

Fossil deposits that preserve soft-bodied organisms provide critical evidence of the history of life. Usually, only more decay resistant materials, e.g., cuticles, survive as organic remains as a result of selective preservation and subsequent diagenesis to more resistant biopolymers. Permineralization, the permeation of tissues by mineralizing fluids, may preserve remarkable detail, particularly of plants. However, evidence of more labile tissues, e.g., muscle, normally requires the replication of their morphology by rapid in situ growth of minerals, i.e., authigenic mineralization. This process relies on the steep geochemical gradients generated by decay microbes. The minerals involved, and the level of detail preserved (which may be subcellular), depend on a number of factors, including the nature of microbial activity and amount of decay, availability of ions, and the type of organism that is fossilized. Understanding these controls is essential to determining the conditions that favor exceptional preservation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.earth.31.100901.144746
2003-05-01
2024-10-08
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.earth.31.100901.144746
Loading
/content/journals/10.1146/annurev.earth.31.100901.144746
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error