Most modeling studies on terrestrial feedbacks to warming over the twenty-first century imply that the net feedbacks are negative—that changes in ecosystems, on the whole, resist warming, largely through ecosystem carbon storage. Although it is clear that potentially important mechanisms can lead to carbon storage, a number of less well-understood mechanisms, several of which are rarely or incompletely modeled, tend to diminish the negative feedbacks or lead to positive feedbacks. At high latitudes, negative feedbacks from forest expansion are likely to be largely or completely compensated by positive feedbacks from decreased albedo, increased carbon emissions from thawed permafrost, and increased wildfire. At low latitudes, negative feedbacks to warming will be decreased or eliminated, largely through direct human impacts. With modest warming, net feedbacks of terrestrial ecosystems to warming are likely to be negative in the tropics and positive at high latitudes. Larger amounts of warming will generally push the feedbacks toward the positive.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Idso SB. 1980. The climatological significance of a doubling of Earth's atmospheric carbon dioxide concentration. Science 207:1462–63 [Google Scholar]
  2. Matthews HS, Keith DQ. 2007. Carbon cycle feedbacks increase the likelihood of a warmer future. Geophys. Res. Lett. 34 doi:10.1029/2006GL028685
  3. Doney SC, Schimel DS. 2007. Carbon and climate system coupling on timescales from the Precambrian to the Anthropocene. Annu. Rev. Environ. Resour. 32 In press
  4. Sellers PJ, Dickinson RE, Randall DA, Betts AK, Hall FG. et al. 1997. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 275:502–9 [Google Scholar]
  5. Bacastow R, Keeling CD. 1973. Atmospheric carbon dioxide and radiocarbon in the natural carbon cycle. II. Changes from A.D. 1700 to 2070 as deduced from a geochemical reservoir. In Carbon and the Biosphere ed. GM Woodwell, EV Pecan pp. 86–135 Springfield, VA: US Dep. Commer. [Google Scholar]
  6. Pacala SW, Hurtt GC, Baker D, Peylin P, Houghton RA. et al. 2001. Consistent land- and atmosphere-based US carbon sink estimates. Science 292:2316–19 [Google Scholar]
  7. Friedlingstein P, Prentice KC, Fung IY, John JG, Brasseur GP. 1995. Carbon-biosphere-climate interactions in the last glacial maximum climate. J. Geophys. Res. 100:7203–21 [Google Scholar]
  8. Hungate B, Dukes J, Shaw M, Luo Y, Field C. 2003. Nitrogen and climate change. Science 302:1512–3 [Google Scholar]
  9. Reich PB, Hungate BA, Luo Y. 2006. Carbon-nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide. Annu. Rev. Ecol. Evol. Syst. 37:611–36 [Google Scholar]
  10. Luo YQ, Field CB, Jackson RB. 2006. Does nitrogen constrain carbon cycling, or does carbon input stimulate nitrogen cycling. Ecology 87:3–4 [Google Scholar]
  11. Bonan GB, Pollard DB, Thompson SL. 1992. Effects of boreal forest vegetation on global climate. Nature 359:716–18 [Google Scholar]
  12. Randerson JT, Liu H, Flanner MG, Chambers SD, Jin Y. et al. 2006. The impact of boreal forest fire on climate warming. Science 314:1130–32 [Google Scholar]
  13. Andreae MO, Rosenfeld D, Artaxo P, Costa AA, Frank GP. et al. 2004. Smoking rain clouds over the Amazon. Science 303:1337–42 [Google Scholar]
  14. Sellers PJ, Bounoua L, Collatz GJ, Randall DA, Dazlich DA. et al. 1996. Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate. Science 271:1402–6 [Google Scholar]
  15. Martin JH. 1990. Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanography 5:1–13 [Google Scholar]
  16. Alcamo J, Kreileman GJJ, Krol MS, Zuidema G. 1994. Modeling the global society-biosphere-climate system. Part 1: model description and testing. Water Air Soil Pollut. 76:1–35 [Google Scholar]
  17. CDIAC 2007. Global change data and information products—by subject http://cdiac.ornl.gov/products.html
  18. Alley RB, Berntsen T, Bindoff NL, Chen Z, Chidthaisong A. et al. 2007. Summary for policymakers. In Climate Change 2007: The Physical Science Basis: Report of Working Group I for the Fourth Assessment Report of the Intergovernmental Panel on Climate Change ed. S Solomon, D Qin, M Manning, Z Chen, M Marquis, et al. pp. 1–18 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  19. Jain AK, Briegleb BP, Minschwaner K, Wuebbles DJ. 2000. Radiative forcings and global warming potentials of 39 greenhouse gases. J. Geophys. Res. 105:20773–90 [Google Scholar]
  20. Prinn RG. 2004. Non-CO2 greenhouse gases. See Ref. 162 pp. 205–16
  21. Chapin FS, Woodwell GM, Randerson JT, Rastetter EB, Lovett GM. et al. 2006. Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 9:1041–50 [Google Scholar]
  22. Field CB, Kaduk J. 2004. The carbon balance of an old-growth forest: building across approaches. Ecosystems 7:525–33 [Google Scholar]
  23. McGuire AD, Chapin FS, Walsh JE, Wirth C. 2006. Integrated regional changes in Arctic climate feedbacks: implications for the global climate system. Annu. Rev. Environ. Resour. 31:61–91 [Google Scholar]
  24. Zimov SA, Schuur EAG, Chapin FS. 2006. Permafrost and the global carbon budget. Science 312:1612–13 [Google Scholar]
  25. Schuur EAG, Trumbore SE. 2006. Partitioning sources of soil respiration in boreal black spruce forest using radiocarbon. Glob. Change Biol. 12:165–76 [Google Scholar]
  26. Walter KM, Zimov SA, Chanton JP, Verbyla D, Chapin FS. 2006. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443:71–75 [Google Scholar]
  27. Lawrence DM, Slater AG. 2005. A projection of severe near-surface permafrost degradation during the 21st century. Geophys. Res. Lett. 32:1–5 [Google Scholar]
  28. Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W. et al. 2006. Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. J. Clim. 19:3337–53 [Google Scholar]
  29. Luo Y. 2007. Terrestrial carbon-cycle feedback to climate warming. Annu. Rev. Ecol. Evol. Syst. 38:683–712 [Google Scholar]
  30. Farquhar GD, von Caemmerer S, Berry JA. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90 [Google Scholar]
  31. Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP. et al. 2005. Forest response to elevated CO2 is conserved across a broad range of productivity. Proc. Natl. Acad. Sci. USA 102:18052–56 [Google Scholar]
  32. Owensby CE, Coyne PI, Ham JM, Auen LM, Knapp AK. 1993. Biomass production in a tallgrass prairie ecosystem exposed to ambient and elevated CO2. Ecol. Appl. 3:644–53 [Google Scholar]
  33. Drake BG, Gonzalez-Meler MA, Long SP. 1997. More efficient plants: a consequence of rising atmospheric CO2. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:607–39 [Google Scholar]
  34. Berry J, Björkman O. 1980. Photosynthetic response and adaptation to temperature in higher plants. Annu. Rev. Plant Physiol. 31:491–543 [Google Scholar]
  35. Mooney HA, Gulmon SL. 1979. Environmental and evolutionary constraints on photosynthetic characteristics of higher plants. In Topics in Plant Population Biology ed. OT Solbrig, S Jain, GB Johnson, PH Raven pp. 316–37 New York: Columbia Univ. Press [Google Scholar]
  36. Bell ML, Goldberg R, Hogrefe C, Kinney P, Knowlton K. et al. 2007. Climate change, ambient ozone, and health in 50 U.S. cities. Clim. Change 82:61–76 [Google Scholar]
  37. Morgan PB, Ainsworth EA, Long SP. 2003. How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth and yield. Plant Cell Environ. 26:1317–28 [Google Scholar]
  38. Parton W, Silver WL, Burke IC, Grassens L, Harmon ME. et al. 2007. Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 315:361–64 [Google Scholar]
  39. Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ. et al. 2001. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–62 [Google Scholar]
  40. Wang Y-P, Houlton B, Field CB. 2007. A model of biogeochemical cycles of carbon, nitrogen and phosphorus including symbiotic nitrogen fixation and phosphatase production. Glob. Biogeochem. Cycles 21 doi:10.1029/2006GB002797
  41. Lüscher A, Hebeisen T, Zanetti S, Hartwig UA, Blum H. et al. 1996. Differences between legumes and nonlegumes of permanent grassland in their responses to free-air carbon dioxide enrichment: its effect on competition in a multispecies mixture. In Carbon Dioxide, Populations, and Communities ed. C Körner, FA Bazzaz pp. 287–300 San Diego: Academic [Google Scholar]
  42. Joel G, Chapin FS III, Chiariello NR, Thayer SS, Field CB. 2001. Species-specific responses of plant communities to altered carbon and nutrient availability. Glob. Change Biol. 7:435–50 [Google Scholar]
  43. Hungate BA, Stiling PD, Dijkstra P, Johnson DW, Ketterer ME. et al. 2004. CO2 elicits long-term decline in nitrogen fixation. Science 304:1291 [Google Scholar]
  44. Aerts R, Cornelissen JHC, van Logtestijn RSP, Callaghan TV. 2007. Climate change has only a minor impact on nutrient resorption parameters in a high-latitude peatland. Oecologia 151:132–39 [Google Scholar]
  45. Carney KM, Hungate BA, Drake BG, Megonigal JP. 2007. Altered soil microbial community at elevated CO2 leads to loss of soil carbon. Proc. Natl. Acad. Sci. USA 104:4990–95 [Google Scholar]
  46. Karnosky DF, Pregitzer KS, Nosberger J, Long SP, Norby RJ. et al. 2006. Impacts of elevated atmospheric [CO2] and [O3] on northern temperate forest ecosystems: results from the Aspen FACE Experiment. In Managed Ecosystems and CO2: Case Studies, Processes, and Perspectives ed. J Nösberger, SP Long, RJ Norby, M Stitt, GR Hendrey, H Blum pp. 213–29 Berlin, Ger.: Springer-Verlag [Google Scholar]
  47. Shaw MR, Zavaleta ES, Chiariello NR, Cleland EE, Mooney HA, Field CB. 2002. Grassland responses to global environmental changes suppressed by elevated CO2. Science 298:1987–90 [Google Scholar]
  48. Wan SQ, Norby RJ, Pregitzer KS, Ledford J, O’Neill EG. 2004. CO2 enrichment and warming of the atmosphere enhance both productivity and mortality of maple tree fine roots. New Phytol. 162:437–46 [Google Scholar]
  49. Oechel WC, Cowles S, Grulke N, Hastings SJ, Lawrence B. et al. 1994. Transient nature of CO2 fertilization in Arctic tundra. Nature 371:500–3 [Google Scholar]
  50. Prentice IC. 2001. The carbon cycle and atmospheric carbon dioxide. In Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change ed. JT Houghton, Y Ding, DJ Griggs, M Noguer, P van der Linden, et al. pp. 183–237 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  51. Baker DF, Law RM, Gurney KR, Rayner P, Peylin P. et al. 2006. TransCom 3 inversion intercomparison: impact of transport model errors on the interannual variability of regional CO2 fluxes, 1988–2003. Glob. Biogeochem. Cycles 20 doi:10.1029/2004GB002439
  52. Friedlingstein P. 2004. Climate carbon cycle interactions. See Ref. 162 pp. 217–24
  53. Deleted in proof
  54. Nakicenovic N, Swart R. eds. 2000. Special Report on Emissions Scenarios: A Special Report to the IPCC Cambridge, UK: Cambridge Univ. Press
  55. Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA. et al. 2001. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob. Change Biol. 7:357–73 [Google Scholar]
  56. Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED. 1996. A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411 [Google Scholar]
  57. Jobbagy EG, Jackson RB. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10:423–36 [Google Scholar]
  58. Nepstad DC, Decarvalho CR, Davidson EA, Jipp PH, Lefebvre PA. et al. 1994. The role of deep roots in the hydrological and carbon cycles of amazonian forests and pastures. Nature 372:666–69 [Google Scholar]
  59. Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA. 2003. Fingerprints of global warming on wild animals and plants. Nature 421:57–60 [Google Scholar]
  60. Hickling R, Roy DB, Hill JK, Fox R, Thomas CD. 2006. The distributions of a wide range of taxonomic groups are expanding polewards. Glob. Change Biol. 12:450–55 [Google Scholar]
  61. Parmesan C. 2006. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37:637–69 [Google Scholar]
  62. Malcolm JR, Liu CR, Neilson RP, Hansen L, Hannah L. 2006. Global warming and extinctions of endemic species from biodiversity hotspots. Conserv. Biol. 20:538–48 [Google Scholar]
  63. Neilson RP, Pitelka LF, Solomon AM, Nathan R, Midgley GF. et al. 2005. Forecasting regional to global plant migration in response to climate change. BioScience 55:749–59 [Google Scholar]
  64. Walker MD, Wahren CH, Hollister RD, Henry GHR, Ahlquist LE. et al. 2006. Plant community responses to experimental warming across the tundra biome. Proc. Natl. Acad. Sci. USA 103:1342–46 [Google Scholar]
  65. Asner GP, Elmore AJ, Olander LP, Martin RE, Harris AT. 2004. Grazing systems, ecosystem responses, and global change. Annu. Rev. Environ. Resour. 29:261–99 [Google Scholar]
  66. Polley HW, Johnson HB, Tischler CR. 2002. Woody invasion of grasslands: evidence that CO2 enrichment indirectly promotes establishment of Prosopis glandulosa. Plant Ecol. 164:85–94 [Google Scholar]
  67. Hughes RF, Archer SR, Asner GP, Wessman CA, McMurtry C. et al. 2006. Changes in aboveground primary production and carbon and nitrogen pools accompanying woody plant encroachment in a temperate savanna. Glob. Change Biol. 12:1733–47 [Google Scholar]
  68. Bradley BA, Houghton RA, Mustard JF, Hamburg SP. 2006. Invasive grass reduces aboveground carbon stocks in shrublands of the western US. Glob. Change Biol. 12:1815–22 [Google Scholar]
  69. Hoffmann WA, Jackson RB. 2000. Vegetation-climate feedbacks in the conversion of tropical savanna to grassland. J. Clim. 13:1593–602 [Google Scholar]
  70. Houghton RA. 2005. Aboveground forest biomass and the global carbon balance. Glob. Change Biol. 11:945–58 [Google Scholar]
  71. Baker TR, Phillips OL, Malhi Y, Almeida S, Arroyo L. et al. 2004. Increasing biomass in Amazonian forest plots. Philos. Trans. R. Soc. London Ser. B 359:353–65 [Google Scholar]
  72. Clark DA. 2004. Sources or sinks? The responses of tropical forests to current and future climate and atmospheric composition. Philos. Trans. R. Soc. London Ser. B. 359:477–91 [Google Scholar]
  73. Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC. et al. 2003. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:1560–63 [Google Scholar]
  74. Hicke JA, Asner GP, Randerson JT, Tucker CJ, Los SO. et al. 2002. Satellite-derived increases in net primary productivity across North America 1982–1998. Geophys. Res. Lett. 29 doi:10.1029/2001GL013578
  75. Goetz SJ, Bunn AG, Fiske GJ, Houghton RA. 2005. Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proc. Natl. Acad. Sci. USA 102:13521–25 [Google Scholar]
  76. Angert A, Biraud S, Bonfils C, Henning CC, Buermann W. et al. 2005. Drier summers cancel out the CO2 uptake enhancement induced by warmer springs. Proc. Natl. Acad. Sci. USA 102:10823–27 [Google Scholar]
  77. Welker JM, Fahnestock JT, Henry GHR, O’Dea KW, Chimner RA. 2004. CO2 exchange in three Canadian high Arctic ecosystems: response to long-term experimental warming. Glob. Change Biol. 10:1981–95 [Google Scholar]
  78. Callaghan TV, Bjorn LO, Chernov Y, Chapin T, Christensen TR. et al. 2004. Effects of changes in climate on landscape and regional processes, and feedbacks to the climate system. Ambio 33:459–68 [Google Scholar]
  79. Cowling SA, Shin Y. 2006. Simulated ecosystem threshold responses to covarying temperature, precipitation and atmospheric CO2 within a region of Amazonia. Glob. Ecol. Biogeogr. 15:553–66 [Google Scholar]
  80. Lewis SL. 2006. Tropical forests and the changing Earth system. Philos. Trans. R. Soc. London Ser. B 361:195–210 [Google Scholar]
  81. Tian H, Melillo JM, Kicklighter DW, McGuire AD, Helfrich JVK. et al. 1998. Effects of interannual climate variability on carbon storage in Amazonian ecosystems. Nature 396:694–97 [Google Scholar]
  82. Schulze ED. 2006. Biological control of the terrestrial carbon sink. Biogeosciences 3:147–66 [Google Scholar]
  83. Bond WJ, Woodward FI, Midgley GF. 2005. The global distribution of ecosystems in a world without fire. New Phytol. 165:525–37 [Google Scholar]
  84. Dale VH, Joyce LA, McNulty S, Neilson RP, Ayres MP. et al. 2001. Climate change and forest disturbances. BioScience 51:723–34 [Google Scholar]
  85. Kurz WA, Apps MJ. 1999. A 70-year retrospective analysis of carbon fluxes in the Canadian forest sector. Ecol. Appl. 9:526–47 [Google Scholar]
  86. Van Der Werf GR, Randerson JT, Collatz GJ, Giglio L, Kasibhatla PS. et al. 2004. Continental-scale partitioning of fire emissions during the 1997 to 2001 El Niño/La Niña period. Science 303:73–74 [Google Scholar]
  87. Chapin FS, Hoel M, Carpenter SR, Lubchenco J, Walker B. et al. 2006. Building resilience and adaptation to manage Arctic change. Ambio 35:198–202 [Google Scholar]
  88. Bond WJ. 1995. Kill thy neighbor: an individualistic argument for the evolution of flammability. Oikos 73:79–85 [Google Scholar]
  89. Grigulis K, Lavorel S, Davies ID, Dossantos A, Lloret F, Vila M. 2005. Landscape-scale positive feedbacks between fire and expansion of the large tussock grass, Ampelodesmos mauritanica in Catalan shrublands. Glob. Change Biol. 11:1042–53 [Google Scholar]
  90. Smith SD, Huxman TE, Zitzer SF, Charlet TN, Housman DC. et al. 2000. Elevated CO2 increases productivity and invasive species success in an arid ecosystem. Nature 408:79–82 [Google Scholar]
  91. Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW. 2006. Warming and earlier spring increase western U.S. forest wildfire activity. Science 313:940–43 [Google Scholar]
  92. Hoffmann WA, Schroeder W, Jackson RB. 2003. Regional feedbacks among fire, climate, and tropical deforestation. J. Geophys. Res. Atmos. 108:4721 [Google Scholar]
  93. Ray D, Nepstad D, Moutinho P. 2005. Micrometeorological and canopy controls of fire susceptibility in a forested Amazon landscape. Ecol. Appl. 15:1664–78 [Google Scholar]
  94. Webb TJ, Woodward FI, Hannah L, Gaston KJ. 2005. Forest cover-rainfall relationships in a biodiversity hotspot: the Atlantic forest of Brazil. Ecol. Appl. 15:1968–83 [Google Scholar]
  95. Laurance W. 2004. Forest-climate interactions in fragmented tropical landscapes. Philos. Trans. R. Soc. London Ser. B 359:345–52 [Google Scholar]
  96. Huntington TG. 2006. Evidence for intensification of the global water cycle: review and synthesis. J. Hydrol. 319:83–95 [Google Scholar]
  97. D’Antonio CM, Vitousek PM. 1992. Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annu. Rev. Ecol. Syst. 23:63–87 [Google Scholar]
  98. Logan JA, Regniere J, Powell JA. 2003. Assessing the impacts of global warming on forest pest dynamics. Front. Ecol. Environ. 1:130–37 [Google Scholar]
  99. Coley PD. 1998. Possible effects of climate change on plant/herbivore interactions in moist tropical forests. Clim. Change 39:455–72 [Google Scholar]
  100. Zvereva EL, Kozlov MV. 2006. Consequences of simultaneous elevation of carbon dioxide and temperature for plant-herbivore interactions: a metaanalysis. Glob. Change Biol. 12:27–41 [Google Scholar]
  101. Reich PB, Oleksyn J. 2004. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc. Natl. Acad. Sci. USA 101:11001–6 [Google Scholar]
  102. Gorham E. 1991. Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol. Appl. 1:182–95 [Google Scholar]
  103. Zimov SA, Voropaev YV, Semiletov IP, Davidov SP, Prosiannikov SF. et al. 1997. North Siberian lakes: a methane source fueled by Pleistocene carbon. Science 277:800–2 [Google Scholar]
  104. Glatzel S, Basiliko N, Moore T. 2004. Carbon dioxide and methane production potentials of peats from natural, harvested and restored sites, eastern Quebec, Canada. Wetlands 24:261–67 [Google Scholar]
  105. Dutta K, Schuur EAG, Neff JC, Zimov SA. 2006. Potential carbon release from permafrost soils of northeastern Siberia. Glob. Change Biol. 12:2336–51 [Google Scholar]
  106. Gruber N, Friedlingstein P, Field CB, Valentini R, Heimann M. et al. 2004. The vulnerability of the carbon cycle in the 21st century: an assessment of carbon-climate-human interactions. See Ref. 162 pp. 45–76
  107. Shindell DT, Walter BP, Faluvegi G. 2004. Impacts of climate change on methane emissions from wetlands. Geophys. Res. Lett. 31 doi:10.1029/2004GL021009
  108. Davidson EA, Ishida FY, Nepstad DC. 2004. Effects of an experimental drought on soil emissions of carbon dioxide, methane, nitrous oxide, and nitric oxide in a moist tropical forest. Glob. Change Biol. 10:718–30 [Google Scholar]
  109. Smemo KA, Yavitt JB. 2006. A multi-year perspective on methane cycling in a shallow peat fen in central New York State, USA. Wetlands 26:20–29 [Google Scholar]
  110. Hargreaves KJ, Fowler D, Pitcairn CER, Aurela M. 2001. Annual methane emission from Finnish mires estimated from eddy covariance campaign measurements. Theor. Appl. Climatol. 70:203–13 [Google Scholar]
  111. Christensen TR, Ekberg A, Strom L, Mastepanov M, Panikov N. et al. 2003. Factors controlling large scale variations in methane emissions from wetlands. Geophys. Res. Lett. 30 doi:10.1029/2002GL016848
  112. Ferretti DF, Miller JB, White JWC, Etheridge DM, Lassey KR. et al. 2005. Unexpected changes to the global methane budget over the past 2000 years. Science 309:1714–17 [Google Scholar]
  113. Giles J. 2006. Methane quashes green credentials of hydropower. Nature 444:524–25 [Google Scholar]
  114. Wahlen M. 1993. The global methane cycle. Annu. Rev. Earth Planet. Sci. 21:407–26 [Google Scholar]
  115. Del Grosso SJ, Parton WJ, Mosier AR, Walsh MK, Ojima DS, Thornton PE. 2006. DAYCENT national-scale simulations of nitrous oxide emissions from cropped soils in the United States. J. Environ. Q. 35:1451–60 [Google Scholar]
  116. Robertson GP, Paul EA, Harwood RR. 2000. Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere. Science 289:1922–25 [Google Scholar]
  117. Galloway JN, Levy H, Kashibhatla PS. 1994. Year 2020: consequences of population growth and development on deposition of oxidized nitrogen. Ambio 23:120–23 [Google Scholar]
  118. Baggs EM, Richter M, Hartwig UA, Cadisch G. 2003. Nitrous oxide emissions from grass swards during the eighth year of elevated atmospheric pCO2 (Swiss FACE). Glob. Change Biol. 9:1214–22 [Google Scholar]
  119. Groffman PM, Hardy JP, Driscoll CT, Fahey TJ. 2006. Snow depth, soil freezing, and fluxes of carbon dioxide, nitrous oxide and methane in a northern hardwood forest. Glob. Change Biol. 12:1748–60 [Google Scholar]
  120. Hart SC. 2006. Potential impacts of climate change on nitrogen transformations and greenhouse gas fluxes in forests: a soil transfer study. Glob. Change Biol. 12:1032–46 [Google Scholar]
  121. Matson PA, Naylor R, Ortiz-Monasterio I. 1998. Integration of environmental, agronomic, and economic aspects of fertilizer management. Science 280:112–14 [Google Scholar]
  122. Matson PA, McDowell WD, Townsend A, Vitousek P. 1999. The globalization of nitrogen deposition: ecosystem consequences in tropical environments. Biogeochemistry 46:67–83 [Google Scholar]
  123. Foley JA, Costa MH, Delire C, Ramankutty N, Snyder P. 2003. Green surprise? How terrestrial ecosystems could affect Earth's climate. Front. Ecol. Environ. 1:38–44 [Google Scholar]
  124. Pielke RA, Marland G, Betts RA, Chase TN, Eastman JL. et al. 2002. The influence of land-use change and landscape dynamics on the climate system: relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philos. Trans. R. Soc. London Ser. A 360:1705–19 [Google Scholar]
  125. Sturm M, Racine C, Tape K. 2001. Climate change: increasing shrub abundance in the Arctic. Nature 411:546–47 [Google Scholar]
  126. Chapin FS III, Sturm M, Serreze MC, McFadden JP, Key JR. et al. 2005. Role of land-surface changes in Arctic summer warming. Science 310:657–60 [Google Scholar]
  127. Archer S. 1994. Woody plant encroachment into southwestern grasslands and savannas: rates, patterns and proximate causes. In Ecological Implications of Livestock Herbivory in the West ed. M Vavra, WA Laycock, RD Pieper pp. 13–68 Denver: Soc. Range Manag [Google Scholar]
  128. Betts RA. 2000. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408:187–90 [Google Scholar]
  129. Gibbard S, Caldeira K, Bala G, Phillips TJ, Wickett M. 2005. Climate effects of global land cover change. Geophys. Res. Lett. 32: doi:10.1029/2005GL024550 [Google Scholar]
  130. Bala G, Caldeira K, Mirin A, Wickett M, Delire C, Phillips TJ. 2006. Biogeophysical effects of CO2 fertilization on global climate. Tellus B 58:620–27 [Google Scholar]
  131. Bala G, Caldeira K, Mirin A, Wickett M, Delire C. 2005. Multi-century changes to global climate and carbon cycle: results from a coupled climate and carbon cycle model. J. Clim. 18:4531–44 [Google Scholar]
  132. Lucht W, Schaphoff S, Erbrecht T, Heyder U, Cramer W. 2006. Terrestrial vegetation redistribution and carbon balance under climate change. Carbon Balance Manag. 1: doi:10.1186/1750-0680-1-6 [Google Scholar]
  133. Betts RA, Cox PM, Lee SE, Woodward FI. 1997. Contrasting physiological and structural vegetation feedbacks in climate change simulations. Nature 387:796–99 [Google Scholar]
  134. Soden BJ, Held IM. 2006. An assessment of climate feedbacks in coupled ocean-atmosphere models. J. Clim. 19:3354–60 [Google Scholar]
  135. Henderson-Sellers A, Dickinson RE, Durbidge TB, Kennedy PJ, McGuffie K, Pitman AJ. 1993. Tropical deforestation: modeling local-scale to regional-scale climate change. J. Geophys. Res. Atmos. 98:7289–315 [Google Scholar]
  136. Ramankutty N, Foley JA. 1998. Characterizing patterns of global land use: an analysis of global croplands data. Glob. Biogeochem. Cycles 12:667–85 [Google Scholar]
  137. Vitousek PM, Mooney HA, Lubchenco J, Melillo JM. 1997. Human domination of Earth's ecosystems. Science 277:494–99 [Google Scholar]
  138. Alcamo J, Leemans R, Kreileman E. 1998. Global Change Scenarios of the 21st Century: Results from the IMAGE 2.1 Model Oxford, UK: Pergamon296pp.
  139. Leemans R, Eickhout B, Strengers B, Bouwman L, Schaeffer M. 2002. The consequences of uncertainties in land use, climate and vegetation responses on the terrestrial carbon. Sci. China Ser. C Life Sci. 45:126–41 [Google Scholar]
  140. Bounoua L, DeFries R, Collatz GJ, Sellers P, Khan H. 2002. Effects of land cover conversion on surface climate. Clim. Change 52:29–64 [Google Scholar]
  141. Sitch S, Brovkin V, von Bloh W, van Vuuren D, Eickhout B, Ganopolski A. 2005. Impacts of future land cover changes on atmospheric CO2 and climate. Glob. Biogeochem. Cycles 19: doi:10.1029/2004GB002311 [Google Scholar]
  142. Feddema JJ, Oleson KW, Bonan GB, Mearns LO, Buja LE. et al. 2005. The importance of land-cover change in simulating future climates. Science 310:1674–78 [Google Scholar]
  143. Fischer G, Shah M, Tubiello FN, van Velhuizen H. 2005. Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990–2080. Philos. Trans. R. Soc. London Ser. B 360:2067–83 [Google Scholar]
  144. Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ. 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–87 [Google Scholar]
  145. Vitousek PM, Howarth RW. 1991. Nitrogen limitation on land and in the sea: How can it occur. Biogeochemistry 13:87–115 [Google Scholar]
  146. Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW. et al. 2004. Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226 [Google Scholar]
  147. Luo Y, Su B, Currie WS, Dukes JS, Finzi A. et al. 2004. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience 54:731–39 [Google Scholar]
  148. van Groenigen KJ, Six J, Hungate BA, de Graaff MA, van Breemen N, van Kessel C. 2006. Element interactions limit soil carbon storage. Proc. Natl. Acad. Sci. USA 103:6571–74 [Google Scholar]
  149. Vitousek PM, Sanford RL Jr. 1986. Nutrient cycling in moist tropical forest. Annu. Rev. Ecol. Syst. 17:137–67 [Google Scholar]
  150. Aber JD, Ollinger SV, Driscoll CT. 1997. Modeling nitrogen saturation in forest ecosystems in response to land use and atmospheric deposition. Ecol. Model. 101:61–78 [Google Scholar]
  151. Driscoll CT, Whitall D, Aber J, Boyer E, Castro M. et al. 2003. Nitrogen pollution in the northeastern United States: sources, effects, and management options. BioScience 53:357–74 [Google Scholar]
  152. Bragazza L, Freeman C, Jones T, Rydin H, Limpens J. et al. 2006. Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proc. Natl. Acad. Sci. USA 103:19386–89 [Google Scholar]
  153. Tilman D, Hill J, Lehman C. 2006. Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314:1598–600 [Google Scholar]
  154. Curran LM, Trigg SN, McDonald AK, Astiani D, Hardiono YM. et al. 2004. Lowland forest loss in protected areas of Indonesian Borneo. Science 303:1000–3 [Google Scholar]
  155. Food Agric. Organ 2003. World Agriculture Towards 2015/2030: an FAO Perspective London: Earthscan
  156. Energy Inf. Adm 2006. International Energy Outlook DOE/EIA-0484 Washington, DC: US Dep. Energy
  157. Schneider SH, Mastrandrea MD. 2005. Probabilistic assessment of “dangerous” climate change and emissions pathways. Proc. Natl. Acad. Sci. USA 102:15728–35 [Google Scholar]
  158. Morgan MG, Adams PJ, Keith DW. 2006. Elicitation of expert judgments of aerosol forcing. Clim. Change 75:195–214 [Google Scholar]
  159. Gurevitch J, Hedges LV. 1993. Meta-analysis: combining the results of independent experiments. In Design and Analysis of Ecological Experiments ed. SM Scheiner, J Gurevitch pp. 378–98 New York: Chapman & Hall [Google Scholar]
  160. Saugier B, Roy J, Mooney HA. 2001. Estimations of global terrestrial productivity: converging toward a single number. In Terrestrial Global Productivity ed. J Roy, B Saugier, HA Mooney pp. 543–57 San Diego: Academic [Google Scholar]
  161. Sabine CL, Heiman M, Artaxo P, Bakker DCE, Chen C-TA. et al. 2004. Current status and past trends of the carbon cycle1. See Ref. 162 pp. 17–44
  162. Field CB, Raupach MR. eds. 2004. The Global Carbon Cycle: Integrating Humans, Climate, and the Natural World Washington, DC: Island

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error