Empirical research has not supported the prediction that populations of terrestrial herbivorous arthropods are regulated solely by their natural enemies. Instead, both natural enemies (top-down effects) and resources (bottom-up effects) may play important regulatory roles. This review evaluates the hypothesis that higher-order predators may constrain the top-down control of herbivore populations. Natural enemies of herbivorous arthropods generally are not top predators within terrestrial food webs. Insect pathogens and entomopathogenic nematodes inhabiting the soil may be attacked by diverse micro- and mesofauna. Predatory and parasitic insects are attacked by their own suite of predators, parasitoids, and pathogens. The view of natural enemy ecology that has emerged from laboratory studies, where natural enemies are often isolated from all elements of the biotic community except for their hosts or prey, may be an unreliable guide to field dynamics.

Experimental work suggests that interactions of biological control agents with their own natural enemies can disrupt the effective control of herbivore populations. Disruption has been observed experimentally in interactions of bacteria with bacteriophages, nematodes with nematophagous fungi, parasitoids with predators, parasitoids with hyperparasitoids, and predators with other predators. Higher-order predators have been little studied; manipulative field experiments will be especially valuable in furthering our understanding of their roles in arthropod communities.


Article metrics loading...

Loading full text...

Full text loading...


Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error