Nitrogen (N) is central to living systems, and its addition to agricultural cropping systems is an essential facet of modern crop management and one of the major reasons that crop production has kept pace with human population growth. The benefits of N added to cropping systems come, however, at well-documented environmental costs: Increased coastal hypoxia, atmospheric nitrous oxide (NO), reactive N gases in the troposphere, and N deposition onto forests and other natural areas are some of the consequences of our inability to keep fertilizer N from leaving cropped ecosystems via unmanaged pathways. The N cycle is complex, and solutions require a thorough understanding of both the biogeochemical pathways of N in agricultural systems and the consequences of different management practices. Despite the complexity of this challenge, however, a number of technologies are available today to reduce N loss. These include adding rotational complexity to cropping systems to improve N capture by crops, providing farmers with decision support tools for better predicting crop fertilizer N requirements, improving methods for optimizing fertilizer timing and placement, and developing watershed-level strategies to recapture N lost from fields. Solutions to the problem of agricultural N loss will require a portfolio approach in which different technologies are used in different combinations to address site-specific challenges. Solutions will also require incentives that promote their adoption.


Article metrics loading...

Loading full text...

Full text loading...


Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error