Lipid bilayers are delicate structures that are easily disrupted by a variety of amphipathic molecules. Yet the viability of a cell requires the continued assembly of large amphipathic proteins within its membranes without damage. The need to minimize bilayer disruption may account for a number of fundamental features of membrane protein assembly. These include the use of redundant sequence information to establish the topologies and folded structures of membrane proteins and the existence of efficient mechanisms to rid cells of misassembled proteins. Most missense mutations that inactivate a membrane protein probably do so by altering the folding of the membrane-inserted structure rather than by rearranging the topology or by changing key residues involved directly in function. Such misfolded membrane proteins may be toxic to cells if they escape cellular safeguards. This toxicity may underlie some human degenerative diseases due to mutant membrane proteins.


Article metrics loading...

Loading full text...

Full text loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error