The RuvA, RuvB, and RuvC proteins in play important roles in the late stages of homologous genetic recombination and the recombinational repair of damaged DNA. Two proteins, RuvA and RuvB, form a complex that promotes ATP-dependent branch migration of Holliday junctions, a process that is important for the formation of heteroduplex DNA. Individual roles for each protein have been defined, with RuvA acting as a specificity factor that targets RuvB, the branch migration motor, to the junction. Structural studies indicate that two RuvA tetramers sandwich the junction and hold it in an unfolded square-planar configuration. Hexameric rings of RuvB face each other across the junction and promote a novel dual helicase action that “pumps” DNA through the RuvAB complex, using the free energy provided by ATP hydrolysis. The third protein, RuvC endonuclease, resolves the Holliday junction by introducing nicks into two DNA strands. Genetic and biochemical studies indicate that branch migration and resolution are coupled by direct interactions between the three proteins, possibly by the formation of a RuvABC complex.


Article metrics loading...

Loading full text...

Full text loading...


Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error