Gram-positive spore-forming entomopathogenic bacteria can utilize a large variety of protein toxins to help them invade, infect, and finally kill their hosts, through their action on the insect midgut. These toxins belong to a number of homology groups containing a diversity of protein structures and modes of action. In many cases, the toxins consist of unique folds or novel combinations of domains having known protein folds. Some of the toxins display a similar structure and mode of action to certain toxins of mammalian pathogens, suggesting a common evolutionary origin. Most of these toxins are produced in large amounts during sporulation and have the remarkable feature that they are localized in parasporal crystals. Localization of multiple toxin-encoding genes on plasmids together with mobilizable elements enables bacteria to shuffle their armory of toxins. Recombination between toxin genes and sequence divergence has resulted in a wide range of host specificities.


Article metrics loading...

Loading full text...

Full text loading...


Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error