1932

Abstract

▪ Abstract 

Plants utilize several families of photoreceptors to fine-tune growth and development over a large range of environmental conditions. The UV-A/blue light sensing phototropins mediate several light responses enabling optimization of photosynthetic yields. The initial event occurring upon photon capture is a conformational change of the photoreceptor that activates its protein kinase activity. The UV-A/blue light sensing cryptochromes and the red/far-red sensing phytochromes coordinately control seedling establishment, entrainment of the circadian clock, and the transition from vegetative to reproductive growth. In addition, the phytochromes control seed germination and shade-avoidance responses. The molecular mechanisms involved include light-regulated subcellular localization of the photoreceptors, a large reorganization of the transcriptional program, and light-regulated proteolytic degradation of several photoreceptors and signaling components.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.genet.38.072902.092259
2004-12-15
2025-02-17
Loading full text...

Full text loading...

/deliver/fulltext/ge/38/1/annurev.genet.38.072902.092259.html?itemId=/content/journals/10.1146/annurev.genet.38.072902.092259&mimeType=html&fmt=ahah

Literature Cited

  1. Ahmad M, Cashmore AR. 1993. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366:162–66 [Google Scholar]
  2. Ahmad M, Jarillo JA, Smirnova O, Cashmore AR. 1998. The CRY1 blue light photoreceptor of Arabidopsis interacts with phytochrome A in vitro. Mol. Cell. 1:939–48 [Google Scholar]
  3. Ang LH, Chattopadhyay S, Wei N, Oyama T, Okada K. et al. 1998. Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol. Cell. 1:213–22 [Google Scholar]
  4. Babourina O, Newman I, Shabala S. 2002. Blue light-induced kinetics of H+ and Ca2+ fluxes in etiolated wild-type and phototropin-mutant Arabidopsis seedlings. Proc. Natl. Acad. Sci. USA 99:2433–38 [Google Scholar]
  5. Ballesteros ML, Bolle C, Lois LM, Moore JM, Vielle-Calzada JP. et al. 2001. LAF1, a MYB transcription activator for phytochrome A signaling. Genes Dev. 15:2613–25 [Google Scholar]
  6. Baum G, Long JC, Jenkins GI, Trewavas AJ. 1999. Stimulation of the blue light phototropic receptor NPH1 causes a transient increase in cytosolic Ca2+. Proc. Natl. Acad. Sci. USA 96:13554–59 [Google Scholar]
  7. Black M, Shuttleworth JE. 1974. The role of the cotyledons in the photocontrol of hypocotyl extension in Cucumis sativus L. Planta 117:57–66 [Google Scholar]
  8. Blakeslee JJ, Bandyopadhyay A, Peer WA, Makam SN, Murphy AS. 2004. Relocalization of the PIN1 auxin efflux facilitator plays a role in phototropic responses. Plant Physiol. 134:28–31 [Google Scholar]
  9. Blazquez MA, Ahn JH, Weigel D. 2003. A thermosensory pathway controlling flowering time in Arabidopsis thaliana. Nat. Genet. 33:168–71 [Google Scholar]
  10. Boccalandro HE, Mazza CA, Mazzella MA, Casal JJ, Ballare CL. 2001. Ultraviolet B radiation enhances a phytochrome-B-mediated photomorphogenic response in Arabidopsis. Plant Physiol. 126:780–88 [Google Scholar]
  11. Bolle C, Koncz C, Chua NH. 2000. PAT1, a new member of the GRAS family, is involved in phytochrome A signal transduction. Genes Dev. 14:1269–78 [Google Scholar]
  12. Bouly JP, Giovani B, Djamei A, Mueller M, Zeugner A. et al. 2003. Novel ATP-binding and autophosphorylation activity associated with Arabidopsis and human cryptochrome-1. Eur. J. Biochem. 270:2921–28 [Google Scholar]
  13. Briggs WR, Beck CF, Cashmore AR, Christie JM, Hughes J. et al. 2001. The phototropin family of photoreceptors. Plant Cell 13:993–97 [Google Scholar]
  14. Briggs WR, Christie JM. 2002. Phototropins 1 and 2: versatile plant blue-light receptors. Trends Plant Sci. 7:204–10 [Google Scholar]
  15. Briggs WR, Christie JM, Salomon M. 2001. Phototropins: a new family of flavin-binding blue light receptors in plants. Antioxid. Redox Signal. 3:775–88 [Google Scholar]
  16. Briggs WR, Huala E. 1999. Blue-light photoreceptors in higher plants. Annu. Rev. Cell Dev. Biol. 15:33–62 [Google Scholar]
  17. Brosche M, Strid A. 2003. Molecular events following perception of utraviolet-B radiation by plants. Physiol. Plant. 117:1–10 [Google Scholar]
  18. Brudler R, Hitomi K, Daiyasu H, Toh H, Kucho K. et al. 2003. Identification of a new cryptochrome class. Structure, function, and evolution Mol. Cell 11:59–67 [Google Scholar]
  19. Casal JJ. 2000. Phytochromes, cryptochromes, phototropin: photoreceptor interactions in plants. Photochem. Photobiol. 71:1–11 [Google Scholar]
  20. Casal JJ, Davis SJ, Kirchenbauer D, Viczian A, Yanovsky MJ. et al. 2002. The serine-rich N-terminal domain of oat phytochrome A helps regulate light responses and subnuclear localization of the photoreceptor. Plant Physiol. 129:1127–37 [Google Scholar]
  21. Casal JJ, Luccioni LG, Oliverio KA, Boccalandro HE. 2003. Light, phytochrome signalling and photomorphogenesis in Arabidopsis. Photochem. Photobiol. Sci. 2:625–36 [Google Scholar]
  22. Casal JJ, Sanchez RA. 1998. Phytochromes and seed germination. Seed Sci. Res. 8:317–29 [Google Scholar]
  23. Cashmore AR. 2003. Cryptochromes: enabling plants and animals to determine circadian time. Cell 114:537–43 [Google Scholar]
  24. Cashmore AR, Jarillo JA, Wu YJ, Liu D. 1999. Cryptochromes: blue light receptors for plants and animals. Science 284:760–65 [Google Scholar]
  25. Chattopadhyay S, Ang LH, Puente P, Deng XW, Wei N. 1998. Arabidopsis bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression. Plant Cell 10:673–83 [Google Scholar]
  26. Chen M, Schwab R, Chory J. 2003. Characterization of the requirements for localization of phytochrome B to nuclear bodies. Proc. Natl. Acad. Sci. USA 100:14493–98 [Google Scholar]
  27. Christie JM, Reymond P, Powell GK, Bernasconi P, Raibekas AA. et al. 1998. Arabidopsis NPH1: a flavoprotein with the properties of a photoreceptor for phototropism. Science 282:1698–701 [Google Scholar]
  28. Christie JM, Salomon M, Nozue K, Wada M, Briggs WR. 1999. LOV (light, oxygen, or voltage) domains of the blue-light photoreceptor phototropin (nph1): binding sites for the chromophore flavin mononucleotide. Proc. Natl. Acad. Sci. USA 96:8779–83 [Google Scholar]
  29. Christie JM, Swartz TE, Bogomolni RA, Briggs WR. 2002. Phototropin LOV domains exhibit distinct roles in regulating photoreceptor function. Plant J. 32:205–19 [Google Scholar]
  30. Colon-Carmona A, Chen DL, Yeh KC, Abel S. 2000. Aux/IAA proteins are phosphorylated by phytochrome in vitro. Plant Physiol. 124:1728–38 [Google Scholar]
  31. Crosson S, Moffat K. 2001. Structure of a flavin-binding plant photoreceptor domain: insights into light-mediated signal transduction. Proc. Natl. Acad. Sci. USA 98:2995–3000 [Google Scholar]
  32. Crosson S, Moffat K. 2002. Photoexcited structure of a plant photoreceptor domain reveals a light-driven molecular switch. Plant Cell 14:1067–75 [Google Scholar]
  33. Crosson S, Rajagopal S, Moffat K. 2003. The LOV domain family: photoresponsive signaling modules coupled to diverse output domains. Biochemistry 42:2–10 [Google Scholar]
  34. Cutler SR, Ehrhardt DW, Griffitts JS, Somerville CR. 2000. Random GFP:: cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency. Proc. Natl. Acad. Sci. USA 97:3718–23 [Google Scholar]
  35. Davis SJ, Kurepa J, Vierstra RD. 1999. The Arabidopsis thaliana HY1 locus, required for phytochrome-chromophore biosynthesis, encodes a protein related to heme oxygenases. Proc. Natl. Acad. Sci. USA 96:6541–46 [Google Scholar]
  36. DeBlasio SL, Mullen JL, Luesse DR, Hangarter RP. 2003. Phytochrome modulation of blue light-induced chloroplast movements in Arabidopsis. Plant Physiol. 133:1471–79 [Google Scholar]
  37. Devlin PF, Kay SA. 2000. Cryptochromes are required for phytochrome signaling to the circadian clock but not for rhythmicity. Plant Cell 12:2499–510 [Google Scholar]
  38. Devlin PF, Yanovsky MJ, Kay SA. 2003. A genomic analysis of the shade avoidance response in Arabidopsis. Plant Physiol. 133:1617–29 [Google Scholar]
  39. Dieterle M, Zhou YC, Schafer E, Funk M, Kretsch T. 2001. EID1, an F-box protein involved in phytochrome A-specific light signaling. Genes Dev. 15:939–44 [Google Scholar]
  40. Duek PD, Fankhauser C. 2003. HFR1, a putative bHLH transcription factor, mediates both phytochrome A and cryptochrome signalling. Plant J. 34:827–36 [Google Scholar]
  41. Dundr M, Misteli T. 2001. Functional architecture in the cell nucleus. Biochem. J. 356:297–310 [Google Scholar]
  42. Dutta R, Inouye M. 2000. GHKL, an emergent ATPase/kinase superfamily. Trends Biochem. Sci. 25:24–28 [Google Scholar]
  43. Eichenberg K, Baurle I, Paulo N, Sharrock RA, Rudiger W, Schafer E. 2000. Arabidopsis phytochromes C and E have different spectral characteristics from those of phytochromes A and B. FEBS Lett. 470:107–12 [Google Scholar]
  44. Eisinger W, Bogomolni RA, Taiz L. 2003. Interactions between a blue-green reversible photoreceptor and a separate UV-B receptor in stomatal guard cells. Am. J. Bot. 90:1560–66 [Google Scholar]
  45. El-Din El-Assal S, Alonso-Blanco C, Peeters AJ, Raz V, Koornneef M. 2001. A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2. Nat. Genet. 29:435–40 [Google Scholar]
  46. Fairchild CD, Schumaker MA, Quail PH. 2000. HFR1 encodes an atypical bHLH protein that acts in phytochrome A signal transduction. Genes Dev. 14:2377–91 [Google Scholar]
  47. Fankhauser C. 2000. Phytochromes as light-modulated protein kinases. Semin. Cell Dev. Biol. 11:467–73 [Google Scholar]
  48. Fankhauser C, Chory J. 1997. Light control of plant development. Annu. Rev. Cell Dev. Biol. 13:203–29 [Google Scholar]
  49. Fankhauser C, Staiger D. 2002. Photoreceptors in Arabidopsis thaliana: light perception, signal transduction and entrainment of the endogenous clock. Planta 216:1–16 [Google Scholar]
  50. Fankhauser C, Yeh KC, Lagarias JC, Zhang H, Elich TD, Chory J. 1999. PKS1, a substrate phosphorylated by phytochrome that modulates light signaling in Arabidopsis. Science 284:1539–41 [Google Scholar]
  51. Folta KM, Kaufman LS. 2003. Phototropin 1 is required for high-fluence blue-light-mediated mRNA destabilization. Plant Mol. Biol. 51:609–18 [Google Scholar]
  52. Folta KM, Lieg EJ, Durham T, Spalding EP. 2003. Primary inhibition of hypocotyl growth and phototropism depend differently on phototropin-mediated increases in cytoplasmic calcium induced by blue light. Plant Physiol. 133:1464–70 [Google Scholar]
  53. Folta KM, Pontin MA, Karlin-Neumann G, Bottini R, Spalding EP. 2003. Genomic and physiological studies of early cryptochrome 1 action demonstrate roles for auxin and gibberellin in the control of hypocotyl growth by blue light. Plant J. 36:203–14 [Google Scholar]
  54. Folta KM, Spalding EP. 2001. Unexpected roles for cryptochrome 2 and phototropin revealed by high-resolution analysis of blue light-mediated hypocotyl growth inhibition. Plant J. 26:471–78 [Google Scholar]
  55. Franklin KA, Davis SJ, Stoddart WM, Vierstra RD, Whitelam GC. 2003. Mutant analyses define multiple roles for phytochrome C in Arabidopsis photomorphogenesis. Plant Cell 15:1981–89 [Google Scholar]
  56. Franklin KA, Whitelam GC. 2004. Light signals, phytochromes and cross-talk with other environmental cues. J. Exp. Bot. 55:271–76 [Google Scholar]
  57. Friml J. 2003. Auxin transport—shaping the plant. Curr. Opin. Plant Biol. 6:7–12 [Google Scholar]
  58. Friml J, Wisniewska J, Benkova E, Mendgen K, Palme K. 2002. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–9 [Google Scholar]
  59. Furuya M. 1993. Phytochromes: their molecular species, gene family and functions. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44:617–45 [Google Scholar]
  60. Giovani B, Byrdin M, Ahmad M, Brettel K. 2003. Light-induced electron transfer in a cryptochrome blue-light photoreceptor. Nat. Struct. Biol. 10:489–90 [Google Scholar]
  61. Gray WM, Ostin A, Sandberg G, Romano CP, Estelle M. 1998. High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proc. Natl. Acad. Sci. USA 95:7197–202 [Google Scholar]
  62. Guo H, Duong H, Ma N, Lin C. 1999. The Arabidopsis blue light receptor cryptochrome 2 is a nuclear protein regulated by a blue light-dependent post-transcriptional mechanism. Plant J. 19:279–87 [Google Scholar]
  63. Guo H, Mockler T, Duong H, Lin C. 2001. SUB1, an Arabidopsis Ca2+-binding protein involved in cryptochrome and phytochrome coaction. Science 291:487–90 [Google Scholar]
  64. Guo H, Yang H, Mockler TC, Lin C. 1998. Regulation of flowering time by Arabidopsis photoreceptors. Science 279:1360–63 [Google Scholar]
  65. Halliday KJ, Salter MG, Thingnaes E, Whitelam GC. 2003. Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral integrator FT. Plant J. 33:875–85 [Google Scholar]
  66. Halliday KJ, Whitelam GC. 2003. Changes in photoperiod or temperature alter the functional relationships between phytochromes and reveal roles for phyD and phyE. Plant Physiol. 131:1913–20 [Google Scholar]
  67. Harada A, Sakai T, Okada K. 2003. Phot1 and phot2 mediate blue light-induced transient increases in cytosolic Ca2+ differently in Arabidopsis leaves. Proc. Natl. Acad. Sci. USA 100:8583–88 [Google Scholar]
  68. Harmon FG, Kay SA. 2003. The F box protein AFR is a positive regulator of phytochrome A-mediated light signaling. Curr. Biol. 13:2091–96 [Google Scholar]
  69. Harper RM, Stowe-Evans EL, Luesse DR, Muto H, Tatematsu K. et al. 2000. The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue. Plant Cell 12:757–70 [Google Scholar]
  70. Harper SM, Neil LC, Gardner KH. 2003. Structural basis of a phototropin light switch. Science 301:1541–44 [Google Scholar]
  71. Heim MA, Jakoby M, Werber M, Martin C, Weisshaar B, Bailey PC. 2003. The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol. Biol. Evol. 20:735–47 [Google Scholar]
  72. Hennig L, Funk M, Whitelam GC, Schafer E. 1999. Functional interaction of cryptochrome 1 and phytochrome D. Plant J. 20:289–94 [Google Scholar]
  73. Hennig L, Schafer E. 2001. Both subunits of the dimeric plant photoreceptor phytochrome require chromophore for stability of the far-red light-absorbing form. J. Biol. Chem. 276:7913–18 [Google Scholar]
  74. Hisada A, Hanzawa H, Weller JL, Nagatani A, Reid JB, Furuya M. 2000. Light-induced nuclear translocation of endogenous pea phytochrome A visualized by immunocytochemical procedures. Plant Cell 12:1063–78 [Google Scholar]
  75. Hoecker U, Tepperman JM, Quail PH. 1999. SPA1, a WD-repeat protein specific to phytochrome A signal transduction. Science 284:496–99 [Google Scholar]
  76. Holm M, Hardtke CS, Gaudet R, Deng XW. 2001. Identification of a structural motif that confers specific interaction with the WD40 repeat domain of Arabidopsis COP1. EMBO J. 20:118–27 [Google Scholar]
  77. Holm M, Ma LG, Qu LJ, Deng XW. 2002. Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Genes Dev. 16:1247–59 [Google Scholar]
  78. Hsieh HL, Okamoto H, Wang M, Ang LH, Matsui M. et al. 2000. FIN219, an auxin-regulated gene, defines a link between phytochrome A and the downstream regulator COP1 in light control of Arabidopsis development. Genes Dev. 14:1958–70 [Google Scholar]
  79. Huala E, Oeller PW, Liscum E, Han IS, Larsen E, Briggs WR. 1997. Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain. Science 278:2120–23 [Google Scholar]
  80. Hudson M, Ringli C, Boylan MT, Quail PH. 1999. The FAR1 locus encodes a novel nuclear protein specific to phytochrome A signaling. Genes Dev. 13:2017–27 [Google Scholar]
  81. Hudson ME. 2000. The genetics of phytochrome signalling in Arabidopsis. Semin. Cell Dev. Biol. 11:475–83 [Google Scholar]
  82. Hudson ME, Lisch DR, Quail PH. 2003. The FHY3 and FAR1 genes encode transposase-related proteins involved in regulation of gene expression by the phytochrome A-signaling pathway. Plant J. 34:453–71 [Google Scholar]
  83. Huq E, Al-Sady B, Quail PH. 2003. Nuclear translocation of the photoreceptor phytochrome B is necessary for its biological function in seedling photomorphogenesis. Plant J. 35:660–64 [Google Scholar]
  84. Huq E, Quail PH. 2002. PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis. EMBO J. 21:2441–50 [Google Scholar]
  85. Imaizumi T, Tran HG, Swartz TE, Briggs WR, Kay SA. 2003. FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature 426:302–6 [Google Scholar]
  86. Inada S, Ohgishi M, Mayama T, Okada K, Sakai T. 2004. RPT2 is a signal transducer involved in phototropic response and stomatal opening by association with phototropin 1 in Arabidopsis thaliana. Plant Cell. 16:887–96 [Google Scholar]
  87. Jabben M, Shanklin J, Vierstra RD. 1989. Ubiquitin-phytochrome conjugates. Pool dynamics during in vivo phytochrome degradation J. Biol. Chem. 264:4998–5005 [Google Scholar]
  88. Jarillo JA, Capel J, Tang RH, Yang HQ, Alonso JM. et al. 2001. An Arabidopsis circadian clock component interacts with both CRY1 and phyB. Nature 410:487–90 [Google Scholar]
  89. Jarillo JA, Gabrys H, Capel J, Alonso JM, Ecker JR, Cashmore AR. 2001. Phototropin-related NPL1 controls chloroplast relocation induced by blue light. Nature 410:952–54 [Google Scholar]
  90. Jiao Y, Yang H, Ma L, Sun N, Yu H. et al. 2003. A genome-wide analysis of blue-light regulation of Arabidopsis transcription factor gene expression during seedling development. Plant Physiol. 133:1480–93 [Google Scholar]
  91. Jones AM, Ecker JR, Chen JG. 2003. A reevaluation of the role of the heterotrimeric G protein in coupling light responses in Arabidopsis. Plant Physiol. 131:1623–27 [Google Scholar]
  92. Kagawa T, Sakai T, Suetsugu N, Oikawa K, Ishiguro S. et al. 2001. Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science 291:2138–41 [Google Scholar]
  93. Kasahara M, Kagawa T, Oikawa K, Suetsugu N, Miyao M, Wada M. 2002. Chloroplast avoidance movement reduces photodamage in plants. Nature 420:829–32 [Google Scholar]
  94. Kendrick RE, Kronenberg GHM. 1994. Photomorphogenesis in Plants. Dordrecht, Neth.: Kluwer [Google Scholar]
  95. Kim BC, Tennessen DJ, Last RL. 1998. UV-B-induced photomorphogenesis in Arabidopsis thaliana. Plant J. 15:667–74 [Google Scholar]
  96. Kim DH, Kang JG, Yang SS, Chung KS, Song PS, Park CM. 2002. A phytochrome-associated protein phosphatase 2A modulates light signals in flowering time control in Arabidopsis. Plant Cell 14:3043–56 [Google Scholar]
  97. Kim J, Yi H, Choi G, Shin B, Song PS. 2003. Functional characterization of phytochrome interacting factor 3 in phytochrome-mediated light signal transduction. Plant Cell 15:2399–407 [Google Scholar]
  98. Kinoshita T, Doi M, Suetsugu N, Kagawa T, Wada M, Shimazaki K. 2001. Phot1 and phot2 mediate blue light regulation of stomatal opening. Nature 414:656–60 [Google Scholar]
  99. Kinoshita T, Emi T, Tominaga M, Sakamoto K, Shigenaga A. et al. 2003. Blue-light- and phosphorylation-dependent binding of a 14-3-3 protein to phototropins in stomatal guard cells of broad bean. Plant Physiol. 133:1453–63 [Google Scholar]
  100. Kircher S, Gil P, Kozma-Bognar L, Fejes E, Speth V. et al. 2002. Nucleocytoplasmic partitioning of the plant photoreceptors phytochrome A, B, C, D, and E is regulated differentially by light and exhibits a diurnal rhythm. Plant Cell 14:1541–55 [Google Scholar]
  101. Kircher S, Kozma-Bognar L, Kim L, Adam E, Harter K. et al. 1999. Light quality-dependent nuclear import of the plant photoreceptors phytochrome A and B. Plant Cell 11:1445–56 [Google Scholar]
  102. Kleine T, Lockhart P, Batschauer A. 2003. An Arabidopsis protein closely related to Synechocystis cryptochrome is targeted to organelles. Plant J. 35:93–103 [Google Scholar]
  103. Kleiner O, Kircher S, Harter K, Batschauer A. 1999. Nuclear localization of the Arabidopsis blue light receptor cryptochrome 2. Plant J. 19:289–96 [Google Scholar]
  104. Kohchi T, Mukougawa K, Frankenberg N, Masuda M, Yokota A, Lagarias JC. 2001. The Arabidopsis hy2 gene encodes phytochromobilin synthase, a ferredoxin-dependent biliverdin reductase. Plant Cell 13:425–36 [Google Scholar]
  105. Lapko VN, Jiang XY, Smith DL, Song PS. 1997. Posttranslational modification of oat phytochrome A: phosphorylation of a specific serine in a multiple serine cluster. Biochemistry 36:10595–89 [Google Scholar]
  106. Lapko VN, Jiang XY, Smith DL, Song PS. 1999. Mass spectrometric characterization of oat phytochrome A: isoforms and posttranslational modifications. Protein Sci. 8:1032–44 [Google Scholar]
  107. Lariguet P, Boccalandro HE, Alonso JM, Ecker JR, Chory J. et al. 2003. A growth regulatory loop that provides homeostasis to phytochrome A signaling. Plant Cell 15:2966–78 [Google Scholar]
  108. Laubinger S, Hoecker U. 2003. The SPA1-like proteins SPA3 and SPA4 repress photomorphogenesis in the light. Plant J. 35:373–85 [Google Scholar]
  109. Lin C. 2002. Blue light receptors and signal transduction. Plant Cell 14:S207–25 [Google Scholar]
  110. Lin C, Robertson DE, Ahmad M, Raibekas AA, Jorns MS. et al. 1995. Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor CRY1. Science 269:968–70 [Google Scholar]
  111. Lin C, Shalitin D. 2003. Cryptochrome structure and signal transduction. Annu. Rev. Plant Biol. 54:469–96 [Google Scholar]
  112. Lin C, Yang H, Guo H, Mockler T, Chen J, Cashmore AR. 1998. Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. Proc. Natl. Acad. Sci. USA 95:2686–90 [Google Scholar]
  113. Liscum E, Briggs WR. 1995. Mutations in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli. Plant Cell 7:473–85 [Google Scholar]
  114. Liscum E, Hodgson DW, Campbell TJ. 2003. Blue light signaling through the cryptochromes and phototropins. So that's what the blues is all about Plant Physiol. 133:1429–36 [Google Scholar]
  115. Ma L, Li J, Qu L, Hager J, Chen Z. et al. 2001. Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. Plant Cell 13:2589–607 [Google Scholar]
  116. Maloof JN, Borevitz JO, Dabi T, Lutes J, Nehring RB. et al. 2001. Natural variation in light sensitivity of Arabidopsis. Nat. Genet. 29:441–46 [Google Scholar]
  117. Martinez-Garcia JF, Huq E, Quail PH. 2000. Direct targeting of light signals to a promoter element-bound transcription factor. Science 288:859–63 [Google Scholar]
  118. Mas P, Devlin PF, Panda S, Kay SA. 2000. Functional interaction of phytochrome B and cryptochrome 2. Nature 408:207–11 [Google Scholar]
  119. Mas P, Kim WY, Somers DE, Kay SA. 2003. Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature 426:567–70 [Google Scholar]
  120. Matsushita T, Mochizuki N, Nagatani A. 2003. Dimers of the N-terminal domain of phytochrome B are functional in the nucleus. Nature 424:571–74 [Google Scholar]
  121. Mazzella MA, Bertero D, Casal JJ. 2000. Temperature-dependent internode elongation in vegetative plants of Arabidopsis thaliana lacking phytochrome B and cryptochrome 1. Planta 210:497–501 [Google Scholar]
  122. Mazzella MA, Casal JJ. 2001. Interactive signalling by phytochromes and cryptochromes generates de-etiolation homeostasis in Arabidopsis. Plant Cell Environ. 24:155–62 [Google Scholar]
  123. Mazzella MA, Cerdan PD, Staneloni RJ, Casal JJ. 2001. Hierarchical coupling of phytochromes and cryptochromes reconciles stability and light modulation of Arabidopsis development. Development 128:2291–99 [Google Scholar]
  124. Millar AJ. 2003. A suite of photoreceptors entrains the plant circadian clock. J. Biol. Rhythms 18:217–26 [Google Scholar]
  125. Mockler T, Yang H, Yu X, Parikh D, Cheng YC. et al. 2003. Regulation of photoperiodic flowering by Arabidopsis photoreceptors. Proc. Natl. Acad. Sci. USA 100:2140–45 [Google Scholar]
  126. Mockler TC, Guo H, Yang H, Duong H, Lin C. 1999. Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction. Development 126:2073–82 [Google Scholar]
  127. Moller SG, Kim YS, Kunkel T, Chua NH. 2003. PP7 is a positive regulator of blue light signaling in Arabidopsis. Plant Cell 15:1111–19 [Google Scholar]
  128. Moller SG, Kunkel T, Chua NH. 2001. A plastidic ABC protein involved in intercompartmental communication of light signaling. Genes Dev. 15:90–103 [Google Scholar]
  129. Monte E, Alonso JM, Ecker JR, Zhang Y, Li X. et al. 2003. Isolation and characterization of phyC mutants in Arabidopsis reveals complex crosstalk between phytochrome signaling pathways. Plant Cell 15:1962–80 [Google Scholar]
  130. Montgomery BL, Lagarias JC. 2002. Phytochrome ancestry: sensors of bilins and light. Trends Plant Sci. 7:357–66 [Google Scholar]
  131. Motchoulski A, Liscum E. 1999. Arabidopsis NPH3: A NPH1 photoreceptor-interacting protein essential for phototropism. Science 286:961–64 [Google Scholar]
  132. Mustilli AC, Bowler C. 1997. Tuning in to the signals controlling photoregulated gene expression in plants. EMBO J. 16:5801–6 [Google Scholar]
  133. Nagy F, Kircher S, Schafer E. 2000. Nucleo-cytoplasmic partitioning of the plant photoreceptors phytochromes. Semin. Cell Dev. Biol. 11:505–10 [Google Scholar]
  134. Nagy F, Schafer E. 2002. Phytochromes control photomorphogenesis by differentially regulated, interacting signaling pathways in higher plants. Annu. Rev. Plant Biol. 53:329–55 [Google Scholar]
  135. Neff MM, Chory J. 1998. Genetic interactions between phytochrome A, phytochrome B, and cryptochrome 1 during Arabidopsis development. Plant Physiol. 118:27–35 [Google Scholar]
  136. Neff MM, Fankhauser C, Chory J. 2000. Light: an indicator of time and place. Genes Dev. 14:257–71 [Google Scholar]
  137. Nelson DC, Lasswell J, Rogg LE, Cohen MA, Bartel B. 2000. FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis. Cell 101:331–40 [Google Scholar]
  138. Ni M, Tepperman JM, Quail PH. 1998. PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell 95:657–67 [Google Scholar]
  139. Ni M, Tepperman JM, Quail PH. 1999. Binding of phytochrome B to its nuclear signalling partner PIF3 is reversibly induced by light. Nature 400:781–84 [Google Scholar]
  140. Noh B, Bandyopadhyay A, Peer WA, Spalding EP, Murphy AS. 2003. Enhanced gravi- and phototropism in plant mdr mutants mislocalizing the auxin efflux protein PIN1. Nature 424:999–1002 [Google Scholar]
  141. Ohgishi M, Saji K, Okada K, Sakai T. 2004. Functional analysis of each blue light receptor, cry1, cry2, phot1, and phot2, by using combinatorial multiple mutants in Arabidopsis. Proc. Natl. Acad. Sci. USA 101:2223–28 [Google Scholar]
  142. Osterlund MT, Hardtke CS, Wei N, Deng XW. 2000. Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405:462–66 [Google Scholar]
  143. Park CM, Bhoo SH, Song PS. 2000. Inter-domain crosstalk in the phytochrome molecules. Semin. Cell Dev. Biol. 11:449–56 [Google Scholar]
  144. Parks BM, Folta KM, Spalding EP. 2001. Photocontrol of stem growth. Curr. Opin. Plant Biol. 4:436–40 [Google Scholar]
  145. Parks BM, Quail PH. 1991. Phytochrome-deficient hy1 and hy2 long hypocotyl mutants of Arabidopsis are defective in phytochrome chromophore biosynthesis. Plant Cell 3:1177–86 [Google Scholar]
  146. Quail PH. 1997. An emerging molecular map of the phytochromes. Plant Cell Environ. 20:657–66 [Google Scholar]
  147. Quail PH. 2002. Photosensory perception and signalling in plant cells: new paradigms. Curr. Opin. Cell Biol. 14:180–88 [Google Scholar]
  148. Quail PH. 2002. Phytochrome photosensory signalling networks. Nat. Rev. Mol. Cell Biol. 3:85–93 [Google Scholar]
  149. Saijo Y, Sullivan JA, Wang H, Yang J, Shen Y. et al. 2003. The COP1-SPA1 interaction defines a critical step in phytochrome A-mediated regulation of HY5 activity. Genes Dev. 17:2642–47 [Google Scholar]
  150. Sakai T, Kagawa T, Kasahara M, Swartz TE, Christie JM. et al. 2001. Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation. Proc. Natl. Acad. Sci. USA 98:6969–74 [Google Scholar]
  151. Sakai T, Wada T, Ishiguro S, Okada K. 2000. RPT2. A signal transducer of the phototropic response in Arabidopsis Plant Cell 12:225–36 [Google Scholar]
  152. Sakamoto K, Briggs WR. 2002. Cellular and subcellular localization of phototropin 1. Plant Cell 14:1723–35 [Google Scholar]
  153. Sakamoto K, Nagatani A. 1996. Over-expression of a C-terminal region of phytochrome B. Plant Mol. Biol. 31:1079–82 [Google Scholar]
  154. Salomon M, Christie JM, Knieb E, Lempert U, Briggs WR. 2000. Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropin. Biochemistry 39:9401–10 [Google Scholar]
  155. Salomon M, Eisenreich W, Durr H, Schleicher E, Knieb E. et al. 2001. An optomechanical transducer in the blue light receptor phototropin from Avena sativa. Proc. Natl. Acad. Sci. USA 98:12357–61 [Google Scholar]
  156. Salomon M, Knieb E, von Zeppelin T, Rudiger W. 2003. Mapping of low- and high-fluence autophosphorylation sites in phototropin 1. Biochemistry 42:4217–25 [Google Scholar]
  157. Salter MG, Franklin KA, Whitelam GC. 2003. Gating of the rapid shade-avoidance response by the circadian clock in plants. Nature 426:680–83 [Google Scholar]
  158. Sancar A. 2003. Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem. Rev. 103:2203–37 [Google Scholar]
  159. Sehnke PC, DeLille JM, Ferl RJ. 2002. Consummating signal transduction: the role of 14–3–3 proteins in the completion of signal-induced transitions in protein activity. Plant Cell 14 (Suppl.):S339–54 [Google Scholar]
  160. Seo HS, Watanabe E, Tokutomi S, Nagatani A, Chua NH. 2004. Photoreceptor ubiquitination by COP1 E3 ligase desensitizes phytochrome A signaling. Genes Dev. [Google Scholar]
  161. Seo HS, Yang JY, Ishikawa M, Bolle C, Ballesteros ML, Chua NH. 2003. LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1. Nature 424:995–99 [Google Scholar]
  162. Shalitin D, Yang H, Mockler TC, Maymon M, Guo H. et al. 2002. Regulation of Arabidopsis cryptochrome 2 by blue-light-dependent phosphorylation. Nature 417:763–67 [Google Scholar]
  163. Shalitin D, Yu X, Maymon M, Mockler T, Lin C. 2003. Blue light-dependent in vivo and in vitro phosphorylation of Arabidopsis cryptochrome 1. Plant Cell 15:2421–29 [Google Scholar]
  164. Sharrock RA, Clack T. 2002. Patterns of expression and normalized levels of the five Arabidopsis phytochromes. Plant Physiol. 130:442–56 [Google Scholar]
  165. Sharrock RA, Quail PH. 1989. Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution, and differential expression of a plant regulatory photoreceptor family. Genes Dev. 3:1745–57 [Google Scholar]
  166. Shinomura T, Uchida K, Furuya M. 2000. Elementary processes of photoperception by phytochrome A for high-irradiance response of hypocotyl elongation in Arabidopsis. Plant Physiol. 122:147–56 [Google Scholar]
  167. Somers DE, Devlin PF, Kay SA. 1998. Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science 282:1488–90 [Google Scholar]
  168. Somers DE, Quail PH. 1995. Temporal and spatial expression patterns of PHYA and PHYB genes in Arabidopsis. Plant J. 7:413–27 [Google Scholar]
  169. Somers DE, Schultz TF, Milnamow M, Kay SA. 2000. ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell 101:319–29 [Google Scholar]
  170. Spector DL. 2001. Nuclear domains. J. Cell Sci. 114:2891–93 [Google Scholar]
  171. Stoelzle S, Kagawa T, Wada M, Hedrich R, Dietrich P. 2003. Blue light activates calcium-permeable channels in Arabidopsis mesophyll cells via the phototropin signaling pathway. Proc. Natl. Acad. Sci. USA 100:1456–61 [Google Scholar]
  172. Stowe-Evans EL, Luesse DR, Liscum E. 2001. The enhancement of phototropin-induced phototropic curvature in Arabidopsis occurs via a photoreversible phytochrome A-dependent modulation of auxin responsiveness. Plant Physiol. 126:826–34 [Google Scholar]
  173. Suesslin C, Frohnmeyer H. 2003. An Arabidopsis mutant defective in UV-B light-mediated responses. Plant J. 33:591–601 [Google Scholar]
  174. Sullivan JA, Deng XW. 2003. From seed to seed: the role of photoreceptors in Arabidopsis development. Dev. Biol. 260:289–97 [Google Scholar]
  175. Swartz TE, Corchnoy SB, Christie JM, Lewis JW, Szundi I. et al. 2001. The photocycle of a flavin-binding domain of the blue light photoreceptor phototropin. J. Biol. Chem. 276:36493–500 [Google Scholar]
  176. Sweere U, Eichenberg K, Lohrmann J, Mira-Rodado V, Baurle I. et al. 2001. Interaction of the response regulator ARR4 with phytochrome B in modulating red light signaling. Science 294:1108–11 [Google Scholar]
  177. Talbott LD, Shmayevich IJ, Chung Y, Hammad JW, Zeiger E. 2003. Blue light and phytochrome-mediated stomatal opening in the npq1 and phot1 phot2 mutants of Arabidopsis. Plant Physiol. 133:1522–29 [Google Scholar]
  178. Tanaka S, Nakamura S, Mochizuki N, Nagatani A. 2002. Phytochrome in cotyledons regulates the expression of genes in the hypocotyl through auxin-dependent and -independent pathways. Plant Cell Physiol. 43:1171–81 [Google Scholar]
  179. Tatematsu K, Kumagai S, Muto H, Sato A, Watahiki MK. et al. 2004. MASSUGU2 encodes Aux/IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of lateral roots in Arabidopsis thaliana. Plant Cell 16:379–93 [Google Scholar]
  180. Tepperman JM, Zhu T, Chang HS, Wang X, Quail PH. 2001. Multiple transcription-factor genes are early targets of phytochrome A signaling. Proc. Natl. Acad. Sci. USA 98:9437–42 [Google Scholar]
  181. Toledo-Ortiz G, Huq E, Quail PH. 2003. The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell 15:1749–70 [Google Scholar]
  182. Toth R, Kevei E, Hall A, Millar AJ, Nagy F, Kozma-Bognar L. 2001. Circadian clock-regulated expression of phytochrome and cryptochrome genes in Arabidopsis. Plant Physiol. 127:1607–16 [Google Scholar]
  183. Ulm R, Baumann A, Oravecz A, Mate Z, Adam E. et al. 2004. Genome-wide analysis of gene expression reveals function of the bZIP transcription factor HY5 in the UV-B response of Arabidopsis. Proc. Natl. Acad. Sci. USA 101:1397–402 [Google Scholar]
  184. Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G. 2004. Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303:1003–6 [Google Scholar]
  185. von Arnim AG, Deng XW, Stacey MG. 1998. Cloning vectors for the expression of green fluorescent protein fusion proteins in transgenic plants. Gene 221:35–43 [Google Scholar]
  186. Wada M, Kagawa T, Sato Y. 2003. Chloroplast movement. Annu. Rev. Plant Biol. 54:455–68 [Google Scholar]
  187. Wang H, Deng XW. 2002. Arabidopsis FHY3 defines a key phytochrome A signaling component directly interacting with its homologous partner FAR1. EMBO J. 21:1339–49 [Google Scholar]
  188. Wang H, Deng XW. 2003. Dissecting the phytochrome A-dependent signaling network in higher plants. Trends Plant Sci. 8:172–78 [Google Scholar]
  189. Wang H, Ma L, Habashi J, Li J, Zhao H, Deng XW. 2002. Analysis of far-red light-regulated genome expression profiles of phytochrome A pathway mutants in Arabidopsis. Plant J. 32:723–33 [Google Scholar]
  190. Wang H, Ma LG, Li JM, Zhao HY, Deng XW. 2001. Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. Science 294:154–58 [Google Scholar]
  191. Whippo CW, Hangarter RP. 2003. Second positive phototropism results from coordinated co-action of the phototropins and cryptochromes. Plant Physiol. 132:1499–507 [Google Scholar]
  192. Wu SH, Lagarias JC. 2000. Defining the bilin lyase domain: lessons from the extended phytochrome superfamily. Biochemistry 39:13487–95 [Google Scholar]
  193. Yamaguchi R, Nakamura M, Mochizuki N, Kay SA, Nagatani A. 1999. Light-dependent translocation of a phytochrome B-GFP fusion protein to the nucleus in transgenic Arabidopsis. J. Cell Biol. 145:437–45 [Google Scholar]
  194. Yamashino T, Matsushika A, Fujimori T, Sato S, Kato T. et al. 2003. A link between circadian-controlled bHLH factors and the APRR1/TOC1 quintet in Arabidopsis thaliana. Plant Cell. Physiol. 44:619–29 [Google Scholar]
  195. Yang HQ, Tang RH, Cashmore AR. 2001. The signaling mechanism of Arabidopsis CRY1 involves direct interaction with COP1. Plant Cell 13:2573–87 [Google Scholar]
  196. Yang HQ, Wu YJ, Tang RH, Liu D, Liu Y, Cashmore AR. 2000. The C termini of Arabidopsis cryptochromes mediate a constitutive light response. Cell 103:815–27 [Google Scholar]
  197. Yanovsky MJ, Kay SA. 2002. Molecular basis of seasonal time measurement in Arabidopsis. Nature 419:308–12 [Google Scholar]
  198. Yanovsky MJ, Kay SA. 2003. Living by the calendar: how plants know when to flower. Nat. Rev. Mol. Cell Biol. 4:265–75 [Google Scholar]
  199. Yanovsky MJ, Luppi JP, Kirchbauer D, Ogorodnikova OB, Sineshchekov VA. et al. 2002. Missense mutation in the PAS2 domain of phytochrome A impairs subnuclear localization and a subset of responses. Plant Cell 14:1591–603 [Google Scholar]
  200. Yeh KC, Lagarias JC. 1998. Eukaryotic phytochromes: light-regulated serine/threonine protein kinases with histidine kinase ancestry. Proc. Natl. Acad. Sci. USA 95:13976–81 [Google Scholar]
/content/journals/10.1146/annurev.genet.38.072902.092259
Loading
/content/journals/10.1146/annurev.genet.38.072902.092259
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error