▪ Abstract 

Living organisms dependent on water and oxygen for their existence face the major challenge of faithfully maintaining their genetic material under a constant attack from spontaneous hydrolysis and active oxygen species and from other intracellular metabolites that can modify DNA bases. Repair of endogenous DNA base damage by the ubiquitous base-excision repair pathway largely accounts for the significant turnover of DNA even in nonreplicating cells, and must be sufficiently accurate and efficient to preserve genome stability compatible with long-term cellular viability. The size of the mammalian genome has necessitated an increased complexity of repair and diversification of key enzymes, as revealed by gene knock-out mouse models. The genetic instability characteristic of cancer cells may be due, in part, to mutations in genes whose products normally function to ensure DNA integrity.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aas PA, Otterlei M, Falnes PO, Vagbo CB, Skorpen F. et al. 2003. Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA. Nature 421:859–63 [Google Scholar]
  2. Abu M, Waters TR. 2003. The main role of human thymine-DNA glycosylase is removal of thymine produced by deamination of 5-methylcytosine and not removal of ethenocytosine. J. Biol. Chem. 278:8739–44 [Google Scholar]
  3. Aherne G, Brown SD. 1999. The role of uracil misincorporation in thymineless death. In Antifolate Drugs in Cancer Therapy ed. AL Jackman pp. 409–22 Totowa, NJ: Humana [Google Scholar]
  4. Al-Tassan N, Chmiel NH, Maynard J, Fleming N, Livingston AL. et al. 2002. Inherited variants of MYH associated with somatic G:C → T:A mutations in colorectal tumors. Nat. Genet. 30:227–32 [Google Scholar]
  5. Arai T, Kelly VP, Komoro K, Minowa O, Noda T, Nishimura S. 2003. Cell proliferation in liver of Mmh/Ogg1-deficient mice enhances mutation frequency because of the presence of 8-hydroxyguanine in DNA. Cancer Res. 63:4287–92 [Google Scholar]
  6. Arai T, Kelly VP, Minowa O, Noda T, Nishimura S. 2002. High accumulation of oxidative DNA damage, 8-hydroxyguanine, in Mmh/Ogg1 deficient mice by chronic oxidative stress. Carcinogenesis 23:2005–10 [Google Scholar]
  7. Aravind L, Koonin EV. 2000. The alpha/beta fold uracil DNA glycosylases: a common origin with diverse fates. Genome Biol. 1:1–8 [Google Scholar]
  8. Atamna H, Cheung I, Ames BN. 2000. A method for detecting abasic sites in living cells: age-dependent changes in base excision repair. Proc. Natl. Acad. Sci. USA 97:686–91 [Google Scholar]
  9. Bandaru V, Sunkara S, Wallace SS, Bond JP. 2002. A novel human DNA glycosylase that removes oxidative DNA damage and is homologous to Escherichia coli endonuclease VIII. DNA Repair 1:517–29 [Google Scholar]
  10. Beard BC, Wilson SH, Smerdon MJ. 2003. Suppressed catalytic activity of base excision repair enzymes on rotationally positioned uracil in nucleosomes. Proc. Natl. Acad. Sci. USA 100:7465–70 [Google Scholar]
  11. Boorstein RJ, Chiu LN, Teebor GW. 1992. A mammalian cell line deficient in activity of the DNA repair enzyme 5-hydroxymethyluracil-DNA glycosylase is resistant to the toxic effects of the thymidine analog 5-hydroxymethyl-2′-deoxyuridine. Mol. Cell Biol. 12:5536–40 [Google Scholar]
  12. Boorstein RJ, Cummings A Jr, Marenstein DR, Chan MK, Ma Y. et al. 2001. Definitive identification of mammalian 5-hydroxymethyluracil DNA N-glycosylase activity as SMUG1. J. Biol. Chem. 276:41991–97 [Google Scholar]
  13. Branch P, Aquilina G, Bignami M, Karran P. 1993. Defective mismatch binding and a mutator phenotype in cells tolerant to DNA damage. Nature 362:652–54 [Google Scholar]
  14. Bruner SD, Nash HM, Lane WS, Verdine GL. 1998. Repair of oxidatively damaged guanine in Saccharomyces cerevisiae by an alternative pathway. Curr. Biol. 8:393–403 [Google Scholar]
  15. Cai JP, Ishibashi T, Takagi Y, Hayakawa H, Sekiguchi M. 2003. Mouse MTH2 protein which prevents mutations caused by 8-oxoguanine nucleotides. Biochem. Biophys. Res. Commun. 305:1073–77 [Google Scholar]
  16. Caldecott KW. 2003. XRCC1 and DNA strand break repair. DNA Repair 2:955–69 [Google Scholar]
  17. Cappelli E, Taylor R, Cevasco M, Abbondandolo A, Caldecott K, Frosina G. 1997. Involvement of XRCC1 and DNA ligase III gene products in DNA base excision repair. J. Biol. Chem. 272:23970–75 [Google Scholar]
  18. Carmell MA, Zhang L, Conklin DS, Hannon GJ, Rosenquist TA. 2003. Germline transmission of RNAi in mice. Nat. Struct. Biol. 10:91–92 [Google Scholar]
  19. Chafin DR, Vitolo JM, Henricksen LA, Bambara RA, Hayes JJ. 2000. Human DNA ligase I efficiently seals nicks in nucleosomes. EMBO J. 19:5492–501 [Google Scholar]
  20. Chmiel NH, Livingston AL, David SS. 2003. Insight into the functional consequences of inherited variants of the hMYH adenine glycosylase associated with colorectal cancer: complementation assays with hMYH variants and pre-steady-state kinetics of the corresponding mutated E. coli enzymes. J. Mol. Biol. 327:431–43 [Google Scholar]
  21. Colussi C, Parlanti E, Degan P, Aquilina G, Barnes D. et al. 2002. The mammalian mismatch repair pathway removes DNA 8-oxodGMP incorporated from the oxidized dNTP pool. Curr. Biol. 12:912–18 [Google Scholar]
  22. Cooper PK, Nouspikel T, Clarkson SG, Leadon SA. 1997. Defective transcription-coupled repair of oxidative base damage in Cockayne syndrome patients from XP group G. Science 275:990–93 [Google Scholar]
  23. Cortellino S, Turner D, Masciullo V, Schepis F, Albino D. et al. 2003. The base excision repair enzyme MED1 mediates DNA damage response to antitumor drugs and is associated with mismatch repair system integrity. Proc. Natl. Acad. Sci. USA 100:15071–76 [Google Scholar]
  24. Dantzer F, Bjoras M, Luna L, Klungland A, Seeberg E. 2003. Comparative analysis of 8-oxoG:C, 8-oxoG:A, A:C and C:C DNA repair in extracts from wild type or 8-oxoG DNA glycosylase deficient mammalian and bacterial cells. DNA Repair 2:707–18 [Google Scholar]
  25. de Waard H, de Wit J, Gorgels TG, van den Aardweg G, Andressoo JO. et al. 2003. Cell type-specific hypersensitivity to oxidative damage in CSB and XPA mice. DNA Repair 2:13–25 [Google Scholar]
  26. Dianov G, Bischoff C, Sunesen M, Bohr VA. 1999. Repair of 8-oxoguanine in DNA is deficient in Cockayne syndrome group B cells. Nucleic Acids Res. 27:1365–68 [Google Scholar]
  27. Duncan BK, Weiss B. 1982. Specific mutator effects of ung (uracil-DNA glycosylase) mutations in Escherichia coli. J. Bacteriol. 151:750–55 [Google Scholar]
  28. Duncan T, Trewick SC, Koivisto P, Bates PA, Lindahl T, Sedgwick B. 2002. Reversal of DNA alkylation damage by two human dioxygenases. Proc. Natl. Acad. Sci. USA 99:16660–65 [Google Scholar]
  29. Egashira A, Yamauchi K, Yoshiyama K, Kawate H, Katsuki M. et al. 2002. Mutational specificity of mice defective in the MTH1 and/or the MSH2 genes. DNA Repair 1:881–93 [Google Scholar]
  30. Elateri I, Muller-Weeks S, Caradonna S. 2003. The transcription factor, NFI/CTF plays a positive regulatory role in expression of the hSMUG1 gene. DNA Repair 2:1371–85 [Google Scholar]
  31. Elateri I, Tinkelenberg BA, Hansbury M, Caradonna S, Muller-Weeks S, Ladner RD. 2003. hSMUG1 can functionally compensate for Ung1 in the yeast Saccharomyces cerevisiae. DNA Repair 2:315–23 [Google Scholar]
  32. Elder RH, Dianov GL. 2002. Repair of dihydrouracil supported by base excision repair in mNTH1 knock-out cell extracts. J. Biol. Chem. 277:50487–90 [Google Scholar]
  33. Elder RH, Jansen JG, Weeks RJ, Willington MA, Deans B. et al. 1998. Alkylpurine-DNA-N-glycosylase knockout mice show increased susceptibility to induction of mutations by methyl methanesulfonate. Mol. Cell Biol. 18:5828–37 [Google Scholar]
  34. el-Hajj HH, Zhang H, Weiss B. 1988. Lethality of a dut (deoxyuridine triphosphatase) mutation in Escherichia coli. J. Bacteriol. 170:1069–75 [Google Scholar]
  35. Engelward BP, Dreslin A, Christensen J, Huszar D, Kurahara C, Samson L. 1996. Repair-deficient 3-methyladenine DNA glycosylase homozygous mutant mouse cells have increased sensitivity to alkylation-induced chromosome damage and cell killing. EMBO J. 15:945–52 [Google Scholar]
  36. Engelward BP, Weeda G, Wyatt MD, Broekhof JL, de Wit J. et al. 1997. Base excision repair deficient mice lacking the Aag alkyladenine DNA glycosylase. Proc. Natl. Acad. Sci. USA 94:13087–92 [Google Scholar]
  37. Esteller M, Hamilton SR, Burger PC, Baylin SB, Herman JG. 1999. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res. 59:793–97 [Google Scholar]
  38. Esteller M, Herman JG. 2004. Generating mutations but providing chemosensitivity: the role of O6-methylguanine DNA methyltransferase in human cancer. Oncogene 23:1–8 [Google Scholar]
  39. Evert BA, Salmon TB, Song B, Liu JJ, Siede W, Doetsch PW. 2004. Spontaneous DNA damage in Saccharomyces cerevisiae elicits phenotypic properties similar to cancer cells. J. Biol. Chem. 279:22585–94 [Google Scholar]
  40. Fishel ML, Seo YR, Smith ML, Kelley MR. 2003. Imbalancing the DNA base excision repair pathway in the mitochondria; targeting and overexpressing N-methylpurine DNA glycosylase in mitochondria leads to enhanced cell killing. Cancer Res. 63:608–15 [Google Scholar]
  41. Fogg MJ, Pearl LH, Connolly BA. 2002. Structural basis for uracil recognition by archaeal family B DNA polymerases. Nat. Struct. Biol. 9:922–27 [Google Scholar]
  42. Fromme JC, Banerjee A, Huang SJ, Verdine GL. 2004. Structural basis for removal of adenine mispaired with 8-oxoguanine by MutY adenine DNA glycosylase. Nature 427:652–56 [Google Scholar]
  43. Fujikawa K, Kamiya H, Yakushiji H, Fujii Y, Nakabeppu Y, Kasai H. 1999. The oxidized forms of dATP are substrates for the human MutT homologue, the hMTH1 protein. J. Biol. Chem. 274:18201–5 [Google Scholar]
  44. Gadsden MH, McIntosh EM, Game JC, Wilson PJ, Haynes RH. 1993. dUTP pyrophosphatase is an essential enzyme in Saccharomyces cerevisiae. EMBO J. 12:4425–31 [Google Scholar]
  45. Gearhart PJ. 2003. B cells pay a price. Oncogene 22:5379–80 [Google Scholar]
  46. Glassner BJ, Weeda G, Allan JM, Broekhof JL, Carls NH. et al. 1999. DNA repair methyltransferase (Mgmt) knockout mice are sensitive to the lethal effects of chemotherapeutic alkylating agents. Mutagenesis 14:339–47 [Google Scholar]
  47. Greagg MA, Fogg MJ, Panayotou G, Evans SJ, Connolly BA, Pearl LH. 1999. A read-ahead function in archaeal DNA polymerases detects promutagenic template-strand uracil. Proc. Natl. Acad. Sci. USA 96:9045–50 [Google Scholar]
  48. Gros L, Ishchenko AA, Ide H, Elder RH, Saparbaev MK. 2004. The major human AP endonuclease (Ape1) is involved in the nucleotide incision repair pathway. Nucleic Acids Res. 32:73–81 [Google Scholar]
  49. Gu Y, Parker A, Wilson TM, Bai H, Chang DY, Lu AL. 2002. Human MutY homolog, a DNA glycosylase involved in base excision repair, physically and functionally interacts with mismatch repair proteins human MutS homolog 2/human MutS homolog 6. J. Biol. Chem. 277:11135–42 [Google Scholar]
  50. Guillet M, Boiteux S. 2002. Endogenous DNA abasic sites cause cell death in the absence of Apn1, Apn2 and Rad1/Rad10 in Saccharomyces cerevisiae. EMBO J. 21:2833–41 [Google Scholar]
  51. Guillet M, Boiteux S. 2003. Origin of endogenous DNA abasic sites in Saccharomyces cerevisiae. Mol. Cell Biol. 23:8386–94 [Google Scholar]
  52. Ham A-JL, Engelward BP, Koc H, Sangaiah R, Meira LB. et al. 2004. New immunoaffinity-LC-MS/MS methodology reveals that Aag null mice are deficient in their ability to clear 1,N6-etheno-deoxyadenosine DNA lesions from lung and liver in vivo. DNA Repair 3:257–65 [Google Scholar]
  53. Haracska L, Prakash L, Prakash S. 2003. A mechanism for the exclusion of low-fidelity human Y-family DNA polymerases from base excision repair. Genes Dev. 17:2777–85 [Google Scholar]
  54. Haracska L, Yu SL, Johnson RE, Prakash L, Prakash S. 2000. Efficient and accurate replication in the presence of 7,8-dihydro-8-oxoguanine by DNA polymerase eta. Nat. Genet. 25:458–61 [Google Scholar]
  55. Hardeland U, Bentele M, Jiricny J, Schar P. 2003. The versatile thymine DNA-glycosylase: a comparative characterization of the human, Drosophila and fission yeast orthologs. Nucleic Acids Res. 31:2261–71 [Google Scholar]
  56. Haushalter KA, Todd Stukenberg MW, Kirschner MW, Verdine GL. 1999. Identification of a new uracil-DNA glycosylase family by expression cloning using synthetic inhibitors. Curr. Biol. 9:174–85 [Google Scholar]
  57. Hayashi H, Tominaga Y, Hirano S, McKenna AE, Nakabeppu Y, Matsumoto Y. 2002. Replication-associated repair of adenine:8-oxoguanine mispairs by MYH. Curr. Biol. 12:335–39 [Google Scholar]
  58. Hazra TK, Izumi T, Boldogh I, Imhoff B, Kow YW. et al. 2002. Identification and characterization of a human DNA glycosylase for repair of modified bases in oxidatively damaged DNA. Proc. Natl. Acad. Sci. USA 99:3523–28 [Google Scholar]
  59. Hazra TK, Izumi T, Kow YW, Mitra S. 2003. The discovery of a new family of mammalian enzymes for repair of oxidatively damaged DNA, and its physiological implications. Carcinogenesis 24:155–57 [Google Scholar]
  60. Hazra TK, Izumi T, Maidt L, Floyd RA, Mitra S. 1998. The presence of two distinct 8-oxoguanine repair enzymes in human cells: their potential complementary roles in preventing mutation. Nucleic Acids Res. 26:5116–22 [Google Scholar]
  61. Hazra TK, Kow YW, Hatahet Z, Imhoff B, Boldogh I. et al. 2002. Identification and characterization of a novel human DNA glycosylase for repair of cytosine-derived lesions. J. Biol. Chem. 277:30417–20 [Google Scholar]
  62. Hirano S, Tominaga Y, Ichinoe A, Ushijima Y, Tsuchimoto D. et al. 2003. Mutator phenotype of MUTYH-null mouse embryonic stem cells. J. Biol. Chem. 278:38121–24 [Google Scholar]
  63. Hollis T, Lau A, Ellenberger T. 2000. Structural studies of human alkyladenine glycosylase and E. coli 3-methyladenine glycosylase. Mutat. Res. 460:201–10 [Google Scholar]
  64. Huang ME, Rio AG, Nicolas A, Kolodner RD. 2003. A genomewide screen in Saccharomyces cerevisiae for genes that suppress the accumulation of mutations. Proc. Natl. Acad. Sci. USA 100:11529–34 [Google Scholar]
  65. Ide H, Tedzuka K, Shimzu H, Kimura Y, Purmal AA. et al. 1994. Alpha-deoxyadenosine, a major anoxic radiolysis product of adenine in DNA, is a substrate for Escherichia coli endonuclease IV. Biochemistry 33:7842–47 [Google Scholar]
  66. Imai K, Slupphaug G, Lee WI, Revy P, Nonoyama S. et al. 2003. Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nat. Immunol. 4:1023–28 [Google Scholar]
  67. Impellizzeri KJ, Anderson B, Burgers PM. 1991. The spectrum of spontaneous mutations in a Saccharomyces cerevisiae uracil-DNA-glycosylase mutant limits the function of this enzyme to cytosine deamination repair. J. Bacteriol. 173:6807–10 [Google Scholar]
  68. Ischenko AA, Saparbaev MK. 2002. Alternative nucleotide incision repair pathway for oxidative DNA damage. Nature 415:183–87 [Google Scholar]
  69. Ishibashi T, Hayakawa H, Sekiguchi M. 2003. A novel mechanism for preventing mutations caused by oxidation of guanine nucleotides. EMBO Rep. 4:479–83 [Google Scholar]
  70. Jones S, Emmerson P, Maynard J, Best JM, Jordan S. et al. 2002. Biallelic germline mutations in MYH predispose to multiple colorectal adenoma and somatic G:C → T:A mutations. Hum. Mol. Genet. 11:2961–67 [Google Scholar]
  71. Kamiya H, Kasai H. 1997. Mutations induced by 2-hydroxyadenine on a shuttle vector during leading and lagging strand syntheses in mammalian cells. Biochemistry 36:11125–30 [Google Scholar]
  72. Kavli B, Sundheim O, Akbari M, Otterlei M, Nilsen H. et al. 2002. hUNG2 is the major repair enzyme for removal of uracil from U:A matches, U:G mismatches, and U in single-stranded DNA, with hSMUG1 as a broad specificity backup. J. Biol. Chem. 277:39926–36 [Google Scholar]
  73. Kawate H, Itoh R, Sakumi K, Nakabeppu Y, Tsuzuki T. et al. 2000. A defect in a single allele of the Mlh1 gene causes dissociation of the killing and tumorigenic actions of an alkylating carcinogen in methyltransferase-deficient mice. Carcinogenesis 21:301–5 [Google Scholar]
  74. Klungland A, Hoss M, Gunz D, Constantinou A, Clarkson SG. et al. 1999. Base excision repair of oxidative DNA damage activated by XPG protein. Mol. Cell 3:33–42 [Google Scholar]
  75. Klungland A, Rosewell I, Hollenbach S, Larsen E, Daly G. et al. 1999. Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage. Proc. Natl. Acad. Sci. USA 96:13300–5 [Google Scholar]
  76. Kreutzer DA, Essigmann JM. 1998. Oxidized, deaminated cytosines are a source of C → T transitions in vivo. Proc. Natl. Acad. Sci. USA 95:3578–82 [Google Scholar]
  77. Kumar S, Subramanian S. 2002. Mutation rates in mammalian genomes. Proc. Natl. Acad. Sci. USA 99:803–8 [Google Scholar]
  78. Kuraoka I, Robins P, Masutani C, Hanaoka F, Gasparutto D. et al. 2001. Oxygen free radical damage to DNA. Translesion synthesis by human DNA polymerase eta and resistance to exonuclease action at cyclopurine deoxynucleoside residues J. Biol. Chem. 276:49283–88 [Google Scholar]
  79. Lakshmipathy U, Campbell C. 2000. Mitochondrial DNA ligase III function is independent of Xrcc1. Nucleic Acids Res. 28:3880–86 [Google Scholar]
  80. Larson ED, Iams K, Drummond JT. 2003. Strand-specific processing of 8-oxoguanine by the human mismatch repair pathway: inefficient removal of 8-oxoguanine paired with adenine or cytosine. DNA Repair 2:1199–210 [Google Scholar]
  81. Lavrik OI, Prasad R, Sobol RW, Horton JK, Ackerman EJ, Wilson SH. 2001. Photoaffinity labeling of mouse fibroblast enzymes by a base excision repair intermediate. Evidence for the role of poly(ADP-ribose) polymerase-1 in DNA repair J. Biol. Chem. 276:25541–48 [Google Scholar]
  82. Le Page F, Kwoh EE, Avrutskaya A, Gentil A, Leadon SA. et al. 2000. Transcription-coupled repair of 8-oxoguanine: requirement for XPG, TFIIH, and CSB and implications for Cockayne syndrome. Cell 101:159–71 [Google Scholar]
  83. Le Page F, Schreiber V, Dherin C, De Murcia G, Boiteux S. 2003. Poly(ADP-ribose) polymerase-1 (PARP-1) is required in murine cell lines for base excision repair of oxidative DNA damage in the absence of DNA polymerase beta. J. Biol. Chem. 278:18471–77 [Google Scholar]
  84. Li S, Smerdon MJ. 2002. Nucleosome structure and repair of N-methylpurines in the GAL1-10 genes of Saccharomyces cerevisiae. J. Biol. Chem. 277:44651–59 [Google Scholar]
  85. Lindahl T, Barnes DE. 2000. Repair of endogenous DNA damage. Cold Spring Harbor Symp. Quant. Biol. 65:127–33 [Google Scholar]
  86. Lindahl T, Nyberg B. 1974. Heat-induced deamination of cytosine residues in deoxyribonucleic acid. Biochemistry 13:3405–10 [Google Scholar]
  87. Lipton L, Halford SE, Johnson V, Novelli MR, Jones A. et al. 2003. Carcinogenesis in MYH-associated polyposis follows a distinct genetic pathway. Cancer Res. 63:7595–99 [Google Scholar]
  88. Liu L, Nakatsuru Y, Gerson SL. 2002. Base excision repair as a therapeutic target in colon cancer. Clin. Cancer Res. 8:2985–91 [Google Scholar]
  89. Loeb LA. 2001. A mutator phenotype in cancer. Cancer Res. 61:3230–39 [Google Scholar]
  90. Ludwig DL, MacInnes MA, Takiguchi Y, Purtymun PE, Henrie M. et al. 1998. A murine AP-endonuclease gene-targeted deficiency with post-implantation embryonic progression and ionizing radiation sensitivity. Mutat. Res. 409:17–29 [Google Scholar]
  91. Lutsenko E, Bhagwat AS. 1999. The role of the Escherichia coli mug protein in the removal of uracil and 3,N(4)-ethenocytosine from DNA. J. Biol. Chem. 274:31034–38 [Google Scholar]
  92. Maki H, Sekiguchi M. 1992. MutT protein specifically hydrolyses a potent mutagenic substrate for DNA synthesis. Nature 355:273–75 [Google Scholar]
  93. Masutani C, Araki M, Yamada A, Kusumoto R, Nogimori T. et al. 1999. Xeroderma pigmentosum variant (XP-V) correcting protein from HeLa cells has a thymine dimer bypass DNA polymerase activity. EMBO J. 18:3491–501 [Google Scholar]
  94. Matsuda T, Vande Berg BJ, Bebenek K, Osheroff WP, Wilson SH, Kunkel TA. 2003. The base substitution fidelity of DNA polymerase beta-dependent single nucleotide base excision repair. J. Biol. Chem. 278:25947–51 [Google Scholar]
  95. Meira LB, Devaraj S, Kisby GE, Burns DK, Daniel RL. et al. 2001. Heterozygosity for the mouse Apex gene results in phenotypes associated with oxidative stress. Cancer Res. 61:5552–57 [Google Scholar]
  96. Michaels ML, Miller JH. 1992. The GO system protects organisms from the mutagenic effect of the spontaneous lesion 8-hydroxyguanine (7,8-dihydro-8-oxoguanine). J. Bacteriol. 174:6321–25 [Google Scholar]
  97. Millar CB, Guy J, Sansom OJ, Selfridge J, MacDougall E. et al. 2002. Enhanced CpG mutability and tumorigenesis in MBD4-deficient mice. Science 297:403–5 [Google Scholar]
  98. Miller H, Grollman AP. 2003. DNA repair investigations using siRNA. DNA Repair 2:759–63 [Google Scholar]
  99. Minowa O, Arai T, Hirano M, Monden Y, Nakai S. et al. 2000. Mmh/Ogg1 gene inactivation results in accumulation of 8-hydroxyguanine in mice. Proc. Natl. Acad. Sci. USA 97:4156–61 [Google Scholar]
  100. Morland I, Rolseth V, Luna L, Rognes T, Bjoras M, Seeberg E. 2002. Human DNA glycosylases of the bacterial Fpg/MutM superfamily: an alternative pathway for the repair of 8-oxoguanine and other oxidation products in DNA. Nucleic Acids Res. 30:4926–36 [Google Scholar]
  101. Neuberger MS, Harris RS, Di Noia J, Petersen-Mahrt SK. 2003. Immunity through DNA deamination. Trends Biochem. Sci. 28:305–12 [Google Scholar]
  102. Nguyen C, Teo JL, Matsuda A, Eguchi M, Chi EY. et al. 2003. Chemogenomic identification of Ref-1/AP-1 as a therapeutic target for asthma. Proc. Natl. Acad. Sci. USA 100:1169–73 [Google Scholar]
  103. Nilsen H, Haushalter KA, Robins P, Barnes DE, Verdine GL, Lindahl T. 2001. Excision of deaminated cytosine from the vertebrate genome: role of the SMUG1 uracil-DNA glycosylase. EMBO J. 20:4278–86 [Google Scholar]
  104. Nilsen H, Lindahl T, Verreault A. 2002. DNA base excision repair of uracil residues in reconstituted nucleosome core particles. EMBO J. 21:5943–52 [Google Scholar]
  105. Nilsen H, Rosewell I, Robins P, Skjelbred CF, Andersen S. et al. 2000. Uracil-DNA glycosylase (UNG)-deficient mice reveal a primary role of the enzyme during DNA replication. Mol. Cell 5:1059–65 [Google Scholar]
  106. Nilsen H, Stamp G, Andersen S, Hrivnak G, Krokan HE. et al. 2003. Gene-targeted mice lacking the Ung uracil-DNA glycosylase develop B-cell lymphomas. Oncogene 22:5381–86 [Google Scholar]
  107. Nishimura S. 2002. Involvement of mammalian OGG1(MMH) in excision of the 8-hydroxyguanine residue in DNA. Free Radic. Biol. Med. 32:813–21 [Google Scholar]
  108. Ocampo MT, Chaung W, Marenstein DR, Chan MK, Altamirano A. et al. 2002. Targeted deletion of mNth1 reveals a novel DNA repair enzyme activity. Mol. Cell Biol. 22:6111–21 [Google Scholar]
  109. Ohtsubo T, Nishioka K, Imaiso Y, Iwai S, Shimokawa H. et al. 2000. Identification of human MutY homolog (hMYH) as a repair enzyme for 2-hydroxyadenine in DNA and detection of multiple forms of hMYH located in nuclei and mitochondria. Nucleic Acids Res. 28:1355–64 [Google Scholar]
  110. Olsen LC, Aasland R, Wittwer CU, Krokan HE, Helland DE. 1989. Molecular cloning of human uracil-DNA glycosylase, a highly conserved DNA repair enzyme. EMBO J. 8:3121–52 [Google Scholar]
  111. O'Neill RJ, Vorob'eva OV, Shahbakhti H, Zmuda E, Bhagwat AS, Baldwin GS. 2003. Mismatch uracil glycosylase from Escherichia coli: a general mismatch or a specific DNA glycosylase?. J. Biol. Chem. 278:20526–32 [Google Scholar]
  112. Ordway JM, Eberhart D, Curran T. 2003. Cysteine 64 of Ref-1 is not essential for redox regulation of AP-1 DNA binding. Mol. Cell Biol. 23:4257–66 [Google Scholar]
  113. Osterod M, Hollenbach S, Hengstler JG, Barnes DE, Lindahl T, Epe B. 2001. Age-related and tissue-specific accumulation of oxidative DNA base damage in 7,8-dihydro-8-oxoguanine-DNA glycosylase (Ogg1) deficient mice. Carcinogenesis 22:1459–63 [Google Scholar]
  114. Osterod M, Larsen E, Le Page F, Hengstler JG, Van Der Horst GT. et al. 2002. A global DNA repair mechanism involving the Cockayne syndrome B (CSB) gene product can prevent the in vivo accumulation of endogenous oxidative DNA base damage. Oncogene 21:8232–39 [Google Scholar]
  115. Otterlei M, Warbrick E, Nagelhus TA, Haug T, Slupphaug G. et al. 1999. Post-replicative base excision repair in replication foci. EMBO J. 18:3834–44 [Google Scholar]
  116. Parrinello S, Samper E, Krtolica A, Goldstein J, Melov S, Campisi J. 2003. Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat. Cell Biol. 5:741–47 [Google Scholar]
  117. Parsons BL. 2003. MED1: a central molecule for maintenance of genome integrity and response to DNA damage. Proc. Natl. Acad. Sci. USA 100:14601–2 [Google Scholar]
  118. Paz-Elizur T, Krupsky M, Blumenstein S, Elinger D, Schechtman E, Livneh Z. 2003. DNA repair activity for oxidative damage and risk of lung cancer. J. Natl. Cancer Inst. 95:1312–19 [Google Scholar]
  119. Pinz KG, Bogenhagen DF. 1998. Efficient repair of abasic sites in DNA by mitochondrial enzymes. Mol. Cell Biol. 18:1257–65 [Google Scholar]
  120. Poole A, Penny D, Sjoberg BM. 2001. Confounded cytosine! Tinkering and the evolution of DNA. Nat. Rev. Mol. Cell Biol. 2:147–51 [Google Scholar]
  121. Rada C, Williams GT, Nilsen H, Barnes DE, Lindahl T, Neuberger MS. 2002. Immunoglobulin isotype switching is inhibited and somatic hypermutation perturbed in UNG-deficient mice. Curr. Biol. 12:1748–55 [Google Scholar]
  122. Rahman L, Voeller D, Rahman M, Lipkowitz S, Allegra C, et al. 2004. Thymidylate synthase as an oncogene: A novel role for an essential DNA synthesis enzyme. Cancer Cell 5:341–51 [Google Scholar]
  123. Randerath K, Zhou GD, Somers RL, Robbins JH, Brooks PJ. 2001. A 32P-postlabeling assay for the oxidative DNA lesion 8,5′-cyclo-2′-deoxyadenosine in mammalian tissues: evidence that four type II I-compounds are dinucleotides containing the lesion in the 3′ nucleotide. J. Biol. Chem. 276:36051–57 [Google Scholar]
  124. Rangarajan A, Weinberg RA. 2003. Opinion: comparative biology of mouse versus human cells: modelling human cancer in mice. Nat. Rev. Cancer 3:952–59 [Google Scholar]
  125. Rosenquist TA, Zaika E, Fernandes AS, Zharkov DO, Miller H, Grollman AP. 2003. The novel DNA glycosylase, NEIL1, protects mammalian cells from radiation-mediated cell death. DNA Repair 2:581–91 [Google Scholar]
  126. Roth RB, Samson LD. 2002. 3-Methyladenine DNA glycosylase-deficient Aag null mice display unexpected bone marrow alkylation resistance. Cancer Res. 62:656–60 [Google Scholar]
  127. Russo MT, Blasi MF, Chiera F, Fortini P, Degan P. et al. 2004. The oxidized deoxynucleoside triphosphate pool is a significant contributor to genetic instability in mismatch repair-deficient cells. Mol. Cell Biol. 24:465–74 [Google Scholar]
  128. Russo MT, De Luca G, Degan P, Parlanti E, Dogliotti E. et al. 2004. Accumulation of the oxidative base lesion 8-hydroxyguanine in DNA of tumor-prone mice defective in both the Myh and Ogg 1 DNA glycosylases. Cancer Res. 64:4411–14 [Google Scholar]
  129. Sakumi K, Shiraishi A, Shimizu S, Tsuzuki T, Ishikawa T, Sekiguchi M. 1997. Methylnitrosourea-induced tumorigenesis in MGMT gene knockout mice. Cancer Res. 57:2415–18 [Google Scholar]
  130. Sakumi K, Tominaga Y, Furuichi M, Xu P, Tsuzuki T. et al. 2003. Ogg1 knockout-associated lung tumorigenesis and its suppression by Mth1 gene disruption. Cancer Res. 63:902–5 [Google Scholar]
  131. Sedgwick B. 2004. Repairing DNA methylation damage. Nat. Rev. Mol. Cell Biol. 5:148–57 [Google Scholar]
  132. Sedgwick B, Lindahl T. 2002. Recent progress on the Ada response for inducible repair of DNA alkylation damage. Oncogene 21:8886–94 [Google Scholar]
  133. Shen JC, Rideout WM 3rd, Jones PA. 1994. The rate of hydrolytic deamination of 5-methylcytosine in double-stranded DNA. Nucleic Acids Res. 22:972–76 [Google Scholar]
  134. Shimizu Y, Iwai S, Hanaoka F, Sugasawa K. 2003. Xeroderma pigmentosum group C protein interacts physically and functionally with thymine DNA glycosylase. EMBO J. 22:164–73 [Google Scholar]
  135. Sieber OM, Lipton L, Crabtree M, Heinimann K, Fidalgo P. et al. 2003. Multiple colorectal adenomas, classic adenomatous polyposis, and germ-line mutations in MYH. New Engl. J. Med. 348:791–99 [Google Scholar]
  136. Silber JR, Bobola MS, Blank A, Schoeler KD, Haroldson PD. et al. 2002. The apurinic/apyrimidinic endonuclease activity of Ape1/Ref-1 contributes to human glioma cell resistance to alkylating agents and is elevated by oxidative stress. Clin. Cancer Res. 8:3008–18 [Google Scholar]
  137. Sobol RW, Horton JK, Kuhn R, Gu H, Singhal RK. et al. 1996. Requirement of mammalian DNA polymerase-beta in base-excision repair. Nature 379:183–86 [Google Scholar]
  138. Sobol RW, Prasad R, Evenski A, Baker A, Yang XP. et al. 2000. The lyase activity of the DNA repair protein beta-polymerase protects from DNA-damage-induced cytotoxicity. Nature 405:807–10 [Google Scholar]
  139. Tajiri T, Maki H, Sekiguchi M. 1995. Functional cooperation of MutT, MutM and MutY proteins in preventing mutations caused by spontaneous oxidation of guanine nucleotide in Escherichia coli. Mutat. Res. 336:257–67 [Google Scholar]
  140. Takao M, Kanno S, Kobayashi K, Zhang QM, Yonei S. et al. 2002. A back-up glycosylase in Nth1 knock-out mice is a functional Nei (endonuclease VIII) homologue. J. Biol. Chem. 277:42205–13 [Google Scholar]
  141. Takao M, Kanno S, Shiromoto T, Hasegawa R, Ide H. et al. 2002. Novel nuclear and mitochondrial glycosylases revealed by disruption of the mouse Nth1 gene encoding an endonuclease III homolog for repair of thymine glycols. EMBO J. 21:3486–93 [Google Scholar]
  142. Tebbs RS, Thompson LH, Cleaver JE. 2003. Rescue of Xrcc1 knockout mouse embryo lethality by transgene-complementation. DNA Repair 2:1405–17 [Google Scholar]
  143. Thomas D, Scot AD, Barbey R, Padula M, Boiteux S. 1997. Inactivation of OGG1 increases the incidence of G. C → T. A transversions in Saccharomyces cerevisiae: evidence for endogenous oxidative damage to DNA in eukaryotic cells. Mol. Gen. Genet. 254:171–78 [Google Scholar]
  144. Tsuzuki T, Egashira A, Igarashi H, Iwakuma T, Nakatsuru Y. et al. 2001. Spontaneous tumorigenesis in mice defective in the MTH1 gene encoding 8-oxo-dGTPase. Proc. Natl. Acad. Sci. USA 98:11456–61 [Google Scholar]
  145. Tuo J, Jaruga P, Rodriguez H, Dizdaroglu M, Bohr VA. 2002. The Cockayne syndrome group B gene product is involved in cellular repair of 8-hydroxyadenine in DNA. J. Biol. Chem. 277:30832–37 [Google Scholar]
  146. Vaisman A, Woodgate R. 2001. Unique misinsertion specificity of pol iota may decrease the mutagenic potential of deaminated cytosines. EMBO J. 20:6520–29 [Google Scholar]
  147. Wallace SS, Bandaru V, Kathe SD, Bond JP. 2003. The enigma of endonuclease VIII. DNA Repair 2:441–53 [Google Scholar]
  148. Wei K, Kucherlapati R, Edelmann W. 2002. Mouse models for human DNA mismatch-repair gene defects. Trends Mol. Med. 8:346–53 [Google Scholar]
  149. Welsh SJ, Hobbs S, Aherne GW. 2003. Expression of uracil DNA glycosylase (UDG) does not affect cellular sensitivity to thymidylate synthase (TS) inhibition. Eur. J. Cancer 39:378–87 [Google Scholar]
  150. Wibley JE, Waters TR, Haushalter K, Verdine GL, Pearl LH. 2003. Structure and specificity of the vertebrate anti-mutator uracil-DNA glycosylase SMUG1. Mol. Cell 11:1647–59 [Google Scholar]
  151. Deleted in proof
  152. Wilson DM 3rd, Barsky D. 2001. The major human abasic endonuclease: formation, consequences and repair of abasic lesions in DNA. Mutat. Res. 485:283–307 [Google Scholar]
  153. Wilson SH, Sobol RW, Beard WA, Horton JK, Prasad R, Vande Berg BJ. 2000. DNA polymerase beta and mammalian base excision repair. Cold Spring Harbor Symp. Quant. Biol. 65:143–55 [Google Scholar]
  154. Winter DB, Phung QH, Zeng X, Seeberg E, Barnes DE. et al. 2003. Normal somatic hypermutation of Ig genes in the absence of 8-hydroxyguanine-DNA glycosylase. J. Immunol. 170:5558–62 [Google Scholar]
  155. Wong E, Yang K, Kuraguchi M, Werling U, Avdievich E. et al. 2002. Mbd4 inactivation increases C → T transition mutations and promotes gastrointestinal tumor formation. Proc. Natl. Acad. Sci. USA 99:14937–42 [Google Scholar]
  156. Wood ML, Esteve A, Morningstar ML, Kuziemko GM, Essigmann JM. 1992. Genetic effects of oxidative DNA damage: comparative mutagenesis of 7,8-dihydro-8-oxoguanine and 7,8-dihydro-8-oxoadenine in Escherichia coli. Nucleic Acids Res. 20:6023–32 [Google Scholar]
  157. Xanthoudakis S, Smeyne RJ, Wallace JD, Curran T. 1996. The redox/DNA repair protein, Ref-1, is essential for early embryonic development in mice. Proc. Natl. Acad. Sci. USA 93:8919–23 [Google Scholar]
  158. Xie Y, Yang H, Cunanan C, Okamoto K, Shibata D. et al. 2004. Deficiencies in mouse Myh and Ogg1 result in tumor predisposition and G to T mutations in codon 12 of the K-ras oncogene in lung tumors. Cancer Res. 64:3096–102 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error