1932

Abstract

Glucocorticoids are small lipophilic compounds that mediate their many biological effects by binding an intracellular receptor (GR) that, in turn, translocates to the nucleus and directly or indirectly regulates gene transcription. Perhaps the most recognized biologic effect of glucocorticoids on peripheral T cells is immunosuppression, which is due to inhibition of expression of a wide variety of activationinduced gene products. Glucocorticoids have also been implicated in Th lineage development (favoring the generation of Th2 cells) and, by virtue of their downregulation of expression, the inhibition of activation-induced T cell apoptosis. Glucocorticoids are also potent inducers of apoptosis, and even glucocorticoid concentrations achieved during a stress response can cause the death of CD4+CD8+ thymocytes. Perhaps surprisingly, thymic epithelial cells produce glucocorticoids, and based upon in vitro and in vivo studies of T cell development it has been proposed that these locally produced glucocorticoids participate in antigen-specific thymocyte development by inhibiting activation-induced gene transcription and thus increasing the TCR signaling thresholds required to promote positive and negative selection. It is anticipated that studies in animals with tissue-specific GR-deficiency will further elucide how glucocorticoids affect T cell development and function.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.immunol.18.1.309
2000-04-01
2024-04-20
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.immunol.18.1.309
Loading
/content/journals/10.1146/annurev.immunol.18.1.309
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error