1932

Abstract

HIV-1 particles are decorated with a network of densely arranged envelope spikes on their surface. Each spike is formed of a trimer of heterodimers of the gp120 surface and the gp41 transmembrane glycoproteins. These molecules mediate HIV-1 entry into target cells, initiating the HIV-1 replication cycle. They are a target for entry-blocking drugs and for neutralizing Abs that could contribute to vaccine protection. The crystal structure of the core of gp120 has been recently solved. It reveals the structure of the conserved HIV-1 receptor binding sites and some of the mechanisms evolved by HIV-1 to escape Ab responses. The gp120 consists of three faces. One is largely inaccessible on the native trimer, and two faces are exposed but apparently have low immunogenicity, particularly on primary viruses. We have modeled HIV-1 neutralization by a CD4 binding site monoclonal Ab, and we propose that neutralization takes place by inhibition of the interaction between gp120 and the target cell membrane receptors as a result of steric hindrance. Knowledge of gp120 structure and function should assist in the design of new drugs as well as of an effective vaccine. In the latter case, circumventing the low immunogenicity of the HIV-1 envelope spike is a major challenge.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.immunol.19.1.253
2001-04-01
2024-06-16
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.immunol.19.1.253
Loading
/content/journals/10.1146/annurev.immunol.19.1.253
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error