Class switch recombination (CSR) and somatic hypermutation (SHM) have been considered to be mediated by different molecular mechanisms because both target DNAs and DNA modification products are quite distinct. However, involvement of activation-induced cytidine deaminase (AID) in both CSR and SHM has revealed that the two genetic alteration mechanisms are surprisingly similar. Accumulating data led us to propose the following scenario: AID is likely to be an RNA editing enzyme that modifies an unknown pre-mRNA to generate mRNA encoding a nicking endonuclease specific to the stem-loop structure. Transcription of the S and V regions, which contain palindromic sequences, leads to transient denaturation, forming the stem-loop structure that is cleaved by the AID-regulated endonuclease. Cleaved single-strand tails will be processed by error-prone DNA polymerase-mediated gap-filling or exonuclease-mediated resection. Mismatched bases will be corrected or fixed by mismatch repair enzymes. CSR ends are then ligated by the NHEJ system while SHM nicks are repaired by another ligation system.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA. et al. 2001. The sequence of the human genome.. Science 291:1304–51 [Google Scholar]
  2. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W. et al. 2001. Initial sequencing and analysis of the human genome.. Nature 409:860–921 [Google Scholar]
  3. Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T. 2000. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme.. Cell 102:553–63 [Google Scholar]
  4. Revy P, Muto T, Levy Y, Geissmann F, Plebani A, Sanal O, Catalan N, Forveille M, Dufourcq-Labelouse R, Gennery A. et al. 2000. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2).. Cell 102:565–75 [Google Scholar]
  5. Berek C, Berger A, Apel M. 1991. Maturation of the immune response in germinal centers.. Cell 67:1121–29 [Google Scholar]
  6. Pascual V, Liu YJ, Magalski A, de Bouteiller O, Banchereau J, Capra JD. 1994. Analysis of somatic mutation in five B cell subsets of human tonsil.. J. Exp. Med. 180:329–39 [Google Scholar]
  7. Jacob J, Kelsoe G, Rajewsky K, Weiss U. 1991. Intraclonal generation of antibody mutants in germinal centres.. Nature 354:389–92 [Google Scholar]
  8. Liu YJ, Malisan F, de Bouteiller O, Guret C, Lebecque S, Banchereau J, Mills FC, Max EE, Martinez-Valdez H. 1996. Within germinal centers, isotype switching of immunoglobulin genes occurs after the onset of somatic mutation.. Immunity 4:241–50 [Google Scholar]
  9. Rudikoff S, Pawlita M, Pumphrey J, Heller M. 1984. Somatic diversification of immunoglobulins.. Proc. Natl. Acad. Sci. USA 81:2162–66 [Google Scholar]
  10. Siekevitz M, Kocks C, Rajewsky K, Dildrop R. 1987. Analysis of somatic mutation and class switching in naive and memory B cells generating adoptive primary and secondary responses.. Cell 48:757–70 [Google Scholar]
  11. Snapper CM, Marcu KB, Zelazowski P. 1997. The immunoglobulin class switch: beyond “accessibility.”. Immunity 6:217–23 [Google Scholar]
  12. Wu H, Pelkonen E, Knuutila S, Kaartinen M. 1995. A human follicular lymphoma B cell line hypermutates its functional immunoglobulin genes in vitro.. Eur. J. Immunol. 25:3263–69 [Google Scholar]
  13. Bergthorsdottir S, Gallagher A, Jainandunsing S, Cockayne D, Sutton J, Leanderson T, Gray D. 2001. Signals that initiate somatic hypermutation of B cells in vitro.. J. Immunol. 166:2228–34 [Google Scholar]
  14. Dahlenborg K, Pound JD, Gordon J, Borrebaeck CA, Carlsson R. 2000. Signals sustaining human immunoglobulin V gene hypermutation in isolated germinal centre B cells.. Immunology 101:210–17 [Google Scholar]
  15. Zan H, Cerutti A, Dramitinos P, Schaffer A, Li Z, Casali P. 1999. Induction of Ig somatic hypermutation and class switching in a human monoclonal IgM+ IgD+ B cell line in vitro: definition of the requirements and modalities of hypermutation.. J. Immunol. 162:3437–47 [Google Scholar]
  16. Rajewsky K. 1996. Clonal selection and learning in the antibody system.. Nature 381:751–58 [Google Scholar]
  17. MacLennan IC. 1994. Germinal centers.. Annu. Rev. Immunol. 12:117–39 [Google Scholar]
  18. Reimold AM, Iwakoshi NN, Manis J, Vallabhajosyula P, Szomolanyi-Tsuda E, Gravallese EM, Friend D, Grusby MJ, Alt F, Glimcher LH. 2001. Plasma cell differentiation requires the transcription factor XBP-1.. Nature 412:300–7 [Google Scholar]
  19. Piskurich JF, Lin KI, Lin Y, Wang Y, Ting JP, Calame K. 2000. BLIMP-I mediates extinction of major histocompatibility class II transactivator expression in plasma cells.. Nat. Immunol. 1:526–32 [Google Scholar]
  20. Mittrucker HW, Matsuyama T, Grossman A, Kundig TM, Potter J, Shahinian A, Wakeham A, Patterson B, Ohashi PS, Mak TW. 1997. Requirement for the transcription factor LSIRF/IRF4 for mature B and T lymphocyte function.. Science 275:540–43 [Google Scholar]
  21. Kamata T, Nogaki F, Fagarasan S, Sakiyama T, Kobayashi I, Miyawaki S, Ikuta K, Muso E, Yoshida H, Sasayama S, Honjo T. 2000. Increased frequency of surface IgA-positive plasma cells in the intestinal lamina propria and decreased IgA excretion in hyper IgA (HIGA) mice, a murine model of IgA nephropathy with hyperserum IgA.. J. Immunol. 165:1387–94 [Google Scholar]
  22. Miyawaki S, Nakamura Y, Suzuka H, Koba M, Yasumizu R, Ikehara S, Shibata Y. 1994. A new mutation, aly, that induces a generalized lack of lymph nodes accompanied by immunodeficiency in mice.. Eur. J. Immunol. 24:429–34 [Google Scholar]
  23. Shinkura R, Kitada K, Matsuda F, Tashiro K, Ikuta K, Suzuki M, Kogishi K, Serikawa T, Honjo T. 1999. Alymphoplasia is caused by a point mutation in the mouse gene encoding NF-κB-inducing kinase.. Nat. Genet. 22:74–77 [Google Scholar]
  24. Shinkura R, Matsuda F, Sakiyama T, Tsubata T, Hiai H, Paumen M, Miyawaki S, Honjo T. 1996. Defects of somatic hypermutation and class switching in alymphoplasia (aly) mutant mice.. Int. Immunol. 8:1067–75 [Google Scholar]
  25. Ryffel B, Di Padova F, Schreier MH, Le Hir M, Eugster HP, Quesniaux VF. 1997. Lack of type 2 T cell-independent B cell responses and defect in isotype switching in TNF-lymphotoxin α-deficient mice.. J. Immunol. 158:2126–33 [Google Scholar]
  26. Pasparakis M, Alexopoulou L, Episkopou V, Kollias G. 1996. Immune and inflammatory responses in TNFα-deficient mice: a critical requirement for TNFα in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response.. J. Exp. Med. 184:1397–411 [Google Scholar]
  27. Fu YX, Molina H, Matsumoto M, Huang G, Min J, Chaplin DD. 1997. Lymphotoxin-α (LTα) supports development of splenic follicular structure that is required for IgG responses.. J. Exp. Med. 185:2111–20 [Google Scholar]
  28. Le Hir M, Bluethmann H, Kosco-Vilbois MH, Muller M, di Padova F, Moore M, Ryffel B, Eugster HP. 1996. Differentiation of follicular dendritic cells and full antibody responses require tumor necrosis factor receptor-1 signaling.. J. Exp. Med. 183:2367–72 [Google Scholar]
  29. Eugster HP, Muller M, Karrer U, Car BD, Schnyder B, Eng VM, Woerly G, Le Hir M, di Padova F, Aguet M. et al. 1996. Multiple immune abnormalities in tumor necrosis factor and lymphotoxin-α double-deficient mice.. Int. Immunol. 8:23–36 [Google Scholar]
  30. Xu J, Foy TM, Laman JD, Elliott EA, Dunn JJ, Waldschmidt TJ, Elsemore J, Noelle RJ, Flavell RA. 1994. Mice deficient for the CD40 ligand.. Immunity 1:423–31 [Google Scholar]
  31. Kawabe T, Naka T, Yoshida K, Tanaka T, Fujiwara H, Suematsu S, Yoshida N, Kishimoto T, Kikutani H. 1994. The immune responses in CD40–deficient mice: impaired immunoglobulin class switching and germinal center formation.. Immunity 1:167–78 [Google Scholar]
  32. Caamano JH, Rizzo CA, Durham SK, Barton DS, Raventos Suarez C, Snapper CM, Bravo R. 1998. Nuclear factor (NF)-κB2 (p100/p52) is required for normal splenic microarchitecture and B cell-mediated immune responses.. J. Exp. Med. 187:185–96 [Google Scholar]
  33. Franzoso G, Carlson L, Poljak L, Shores EW, Epstein S, Leonardi A, Grinberg A, Tran T, Scharton-Kersten T, Anver M. et al. 1998. Mice deficient in nuclear factor (NF)-κB/p52 present with defects in humoral responses, germinal center reactions, and splenic microarchitecture.. J. Exp. Med. 187:147–59 [Google Scholar]
  34. Zelazowski P, Carrasco D, Rosas FR, Moorman MA, Bravo R, Snapper CM. 1997. B cells genetically deficient in the c-Rel transactivation domain have selective defects in germline CH transcription and Ig class switching.. J. Immunol. 159:3133–39 [Google Scholar]
  35. Carrasco D, Cheng J, Lewin A, Warr G, Yang H, Rizzo C, Rosas F, Snapper C, Bravo R. 1998. Multiple hemopoietic defects and lymphoid hyperplasia in mice lacking the transcriptional activation domain of the c-Rel protein.. J. Exp. Med. 187:973–84 [Google Scholar]
  36. Franzoso G, Carlson L, Scharton-Kersten T, Shores EW, Epstein S, Grinberg A, Tran T, Shacter E, Leonardi A, Anver M. et al. 1997. Critical roles for the Bcl-3 oncoprotein in T cell-mediated immunity, splenic microarchitecture, and germinal center reactions.. Immunity 6:479–90 [Google Scholar]
  37. Toellner KM, Gulbranson Judge A, Taylor DR, Sze DM, MacLennan IC. 1996. Immunoglobulin switch transcript production in vivo related to the site and time of antigen-specific B cell activation.. J. Exp. Med. 183:2303–12 [Google Scholar]
  38. Kinoshita K, Harigai H, Fagarasan S, Muramatsu M, Honjo T. 2001. A hallmark of active class switch recombination: transcripts directed by I promoters on looped-out circular DNAs.. Proc. Natl. Acad. Sci. USA 98:12,620–23 [Google Scholar]
  39. Oliver AM, Martin F, Gartland GL, Carter RH, Kearney JF. 1997. Marginal zone B cells exhibit unique activation, proliferative and immunoglobulin secretory responses.. Eur. J. Immunol. 27:2366–74 [Google Scholar]
  40. Guinamard R, Okigaki M, Schlessinger J, Ravetch JV. 2000. Absence of marginal zone B cells in Pyk-2–deficient mice defines their role in the humoral response.. Nat. Immunol. 1:31–36 [Google Scholar]
  41. Macpherson AJ, Gatto D, Sainsbury E, Harriman GR, Hengartner H, Zinkernagel RM. 2000. A primitive T cellindependent mechanism of intestinal mucosal IgA responses to commensal bacteria.. Science 288:2222–26 [Google Scholar]
  42. Macpherson AJ, Lamarre A, McCoy K, Harriman GR, Odermatt B, Dougan G, Hengartner H, Zinkernagel RM. 2001. IgA production without μ or δ chain expression in developing B cells.. Nat. Immunol. 2:625–31 [Google Scholar]
  43. de Waard R, Dammers PM, Tung JW, Kantor AB, Wilshire JA, Bos NA, Herzenberg LA, Kroese FG. 1998. Presence of germline and full-length IgA RNA transcripts among peritoneal B-1 cells.. Dev. Immunol. 6:81–87 [Google Scholar]
  44. Kroese FG, Ammerlaan WA, Deenen GJ, Adams S, Herzenberg LA, Kantor AB. 1995. A dual origin for IgA plasma cells in the murine small intestine.. Adv. Exp. Med. Biol. A 371:435–40 [Google Scholar]
  45. Kroese FG, Butcher EC, Stall AM, Herzenberg LA. 1989. A major peritoneal reservoir of precursors for intestinal IgA plasma cells.. Immunol. Invest. 18:47–58 [Google Scholar]
  46. Bos NA, Bun JC, Popma SH, Cebra ER, Deenen GJ, van der Cammen MJ, Kroese FG, Cebra JJ. 1996. Monoclonal immunoglobulin A derived from peritoneal B cells is encoded by both germ line and somatically mutated VH genes and is reactive with commensal bacteria.. Infect. Immun. 64:616–23 [Google Scholar]
  47. Fagarasan S, Kinoshita K, Muramatsu M, Ikuta K, Honjo T. 2001. In situ class switching and differentiation to IgA producing cells in the gut lamina propria Nature. 413:639–43 [Google Scholar]
  48. Matsumoto M, Lo SF, Carruthers CJ, Min J, Mariathasan S, Huang G, Plas DR, Martin SM, Geha RS, Nahm MH, Chaplin DD. 1996. Affinity maturation without germinal centres in lymphotoxin-α-deficient mice.. Nature 382:462–66 [Google Scholar]
  49. Kato J, Motoyama N, Taniuchi I, Takeshita H, Toyoda M, Masuda K, Watanabe T. 1998. Affinity maturation in Lyn kinase-deficient mice with defective germinal center formation.. J. Immunol. 160:4788–95 [Google Scholar]
  50. Weller S, Faili A, Garcia C, Braun MC, Le Deist FF, de Saint Basile GG, Hermine O, Fischer A, Reynaud C, Weill J. 2001. CD40–CD40L independent Ig gene hypermutation suggests a second B cell diversification pathway in humans.. Proc. Natl. Acad. Sci. USA 98:1166–70 [Google Scholar]
  51. Shimizu A, Takahashi N, Yaoita Y, Honjo T. 1982. Organization of the constant-region gene family of the mouse immunoglobulin heavy chain.. Cell 28:499–506 [Google Scholar]
  52. Kinoshita K, Honjo T. 2001. Linking class-switch recombination with somatic hypermutation.. Nat. Rev. Mol. Cell Biol. 2:493–503 [Google Scholar]
  53. Iwasato T, Shimizu A, Honjo T, Yamagishi H. 1990. Circular DNA is excised by immunoglobulin class switch recombination.. Cell 62:143–49 [Google Scholar]
  54. von Schwedler U, Jack HM, Wabl M. 1990. Circular DNA is a product of the immunoglobulin class switch rearrangement.. Nature 345:452–56 [Google Scholar]
  55. Matsuoka M, Yoshida K, Maeda T, Usuda S, Sakano H. 1990. Switch circular DNA formed in cytokine-treated mouse splenocytes: evidence for intramolecular DNA deletion in immunoglobulin class switching.. Cell 62:135–42 [Google Scholar]
  56. Lorenz M, Jung S, Radbruch A. 1995. Switch transcripts in immunoglobulin class switching.. Science 267:1825–28 [Google Scholar]
  57. Hein K, Lorenz MG, Siebenkotten G, Petry K, Christine R, Radbruch A. 1998. Processing of switch transcripts is required for targeting of antibody class switch recombination.. J. Exp. Med. 188:2369–74 [Google Scholar]
  58. Nikaido T, Yamawaki Kataoka Y, Honjo T. 1982. Nucleotide sequences of switch regions of immunoglobulin Cϵ and Cγ genes and their comparison.. J. Biol. Chem. 257:7322–29 [Google Scholar]
  59. Nikaido T, Nakai S, Honjo T. 1981. Switch region of immunoglobulin Cμ gene is composed of simple tandem repetitive sequences.. Nature 292:845–48 [Google Scholar]
  60. Arakawa H, Iwasato T, Hayashida H, Shimizu A, Honjo T, Yamagishi H. 1993. The complete murine immunoglobulin class switch region of the α heavy chain gene-hierarchic repetitive structure and recombination breakpoints.. J. Biol. Chem. 268:4651–55 [Google Scholar]
  61. Takahashi N, Nakai S, Honjo T. 1980. Cloning of human immunoglobulin μ gene and comparison with mouse μ gene.. Nucleic Acids Res. 8:5983–91 [Google Scholar]
  62. Mußmann R, Courtet M, Schwager J, Du Pasquier L. 1997. Microsites for immunoglobulin switch recombination breakpoints from Xenopus to mammals.. Eur. J. Immunol. 27:2610–19 [Google Scholar]
  63. Kingzette M, Spieker-Polet H, Yam PC, Zhai SK, Knight KL. 1998. Trans-chromosomal recombination within the Ig heavy chain switch region in B lymphocytes.. Proc. Natl. Acad. Sci. USA 95:11840–45 [Google Scholar]
  64. Kitao H, Arakawa H, Yamagishi H, Shimizu A. 1996. Chicken immunoglobulin μ-chain gene: germline organization and tandem repeats characteristic of class switch recombination.. Immunol. Lett. 52:99–104 [Google Scholar]
  65. Kitao H, Arakawa H, Kuma K, Yamagishi H, Nakamura N, Furusawa S, Matsuda H, Yasuda M, Ekino S, Shimizu A. 2000. Class switch recombination of the chicken IgH chain genes: implications for the primordial switch region repeats.. Int. Immunol. 12:959–68 [Google Scholar]
  66. Sun J, Butler JE. 1997. Sequence analysis of pig switch μ, Cμ, and Cμm.. Immunogenetics 46:452–60 [Google Scholar]
  67. Nguyen VK, Hamers R, Wyns L, Muyldermans S. 1999. Loss of splice consensus signal is responsible for the removal of the entire C(H)1 domain of the functional camel IGG2A heavy-chain antibodies.. Mol. Immunol. 36:515–24 [Google Scholar]
  68. Ishiguro H, Ichihara Y, Namikawa T, Nagatsu T, Kurosawa Y. 1989. Nucleotide sequence of Suncus murinus immunoglobulin μ gene and comparison with mouse and human μ genes.. FEBS Lett. 247:317–22 [Google Scholar]
  69. Knight KL, Becker RS. 1987. Isolation of genes encoding bovine IgM, IgG, IgA and IgE chains.. Vet. Immunol. Immunopathol. 17:17–24 [Google Scholar]
  70. Leung H, Maizels N. 1992. Transcriptional regulatory elements stimulate recombination in extrachromosomal substrates carrying immunoglobulin switch-region sequences.. Proc. Natl. Acad. Sci. USA 89:4154–58 [Google Scholar]
  71. Lepse CL, Kumar R, Ganea D. 1994. Extrachromosomal eukaryotic DNA substrates for switch recombination: analysis of isotype and cell specificity.. DNA Cell Biol. 13:1151–61 [Google Scholar]
  72. Daniels GA, Lieber MR. 1995. Strand specificity in the transcriptional targeting of recombination at immunoglobulin switch sequences.. Proc. Natl. Acad. Sci. USA 92:5625–29 [Google Scholar]
  73. Ott DE, Marcu KB. 1989. Molecular requirements for immunoglobulin heavy chain constant region gene switch-recombination revealed with switch-substrate retroviruses.. Int. Immunol. 1:582–91 [Google Scholar]
  74. Kinoshita K, Tashiro J, Tomita S, Lee CG, Honjo T. 1998. Target specificity of immunoglobulin class switch recombination is not determined by nucleotide sequences of S regions.. Immunity 9:849–58 [Google Scholar]
  75. Stavnezer J, Bradley SP, Rousseau N, Pearson T, Shanmugam A, Waite DJ, Rogers PR, Kenter AL. 1999. Switch recombination in a transfected plasmid occurs preferentially in a B cell line that undergoes switch recombination of its chromosomal Ig heavy chain genes.. J. Immunol. 163:2028–40 [Google Scholar]
  76. Petry K, Siebenkotten G, Christine R, Hein K, Radbruch A. 1999. An extrachromosomal switch recombination substrate reveals kinetics and substrate requirements of switch recombination in primary murine B cells.. Int. Immunol. 11:753–63 [Google Scholar]
  77. Takahashi N, Ueda S, Obata M, Nikaido T, Nakai S, Honjo T. 1982. Structure of human immunoglobulin γ genes: implications for evolution of a gene family.. Cell 29:671–79 [Google Scholar]
  78. Kinoshita K, Shimizu A, Honjo T. 1991. The membrane exons of the pseudo-γ-chain gene of the human immunoglobulin are apparently functional and highly homologous to those of the γ 1 gene.. Immunol. Lett. 27:151–55 [Google Scholar]
  79. Luby TM, Schrader CE, Stavnezer J, Selsing E. 2001. The μ switch region tandem repeats are important, but not required, for antibody class switch recombination.. J. Exp. Med. 193:159–68 [Google Scholar]
  80. Willers J, Kolb C, Weiler E. 1999. Apparent trans-chromosomal antibody class switch in mice bearing an Igh(a) μ-chain transgene on an Igh(b) genetic background.. Immunobiology 200:150–64 [Google Scholar]
  81. Rolink A, Melchers F, Andersson J. 1996. The SCID but not the RAG-2 gene product is required for Sμ-Sϵ heavy chain class switching.. Immunity 5:319–30 [Google Scholar]
  82. Manis JP, Gu Y, Lansford R, Sonoda E, Ferrini R, Davidson L, Rajewsky K, Alt FW. 1998. Ku70 is required for late B cell development and immunoglobulin heavy chain class switching.. J. Exp. Med. 187:2081–89 [Google Scholar]
  83. Casellas R, Nussenzweig A, Wuerffel R, Pelanda R, Reichlin A, Suh H, Qin XF, Besmer E, Kenter A, Rajewsky K, Nussenzweig MC. 1998. Ku80 is required for immunoglobulin isotype switching.. EMBO J. 17:2404–11 [Google Scholar]
  84. Dunnick W, Hertz GZ, Scappino L, Gritzmacher C. 1993. DNA sequences at immunoglobulin switch region recombination sites.. Nucleic Acids Res. 21:365–72 [Google Scholar]
  85. Lee C-G, Kondo S, Honjo T. 1998. Frequent but biased class switch recombination in the Sμ flanking regions.. Curr. Biol. 8:227–30 [Google Scholar]
  86. Shanmugam A, Shi MJ, Yauch L, Stavnezer J, Kenter AL. 2000. Evidence for class-specific factors in immunoglobulin isotype switching.. J. Exp. Med. 191:1365–80 [Google Scholar]
  87. Pan Q, Hammarstrom L. 1999. Targeting of human switch recombination breakpoints: implications for the mechanism of μ-γ isotype switching.. Eur. J. Immunol. 29:2779–87 [Google Scholar]
  88. Ott DE, Alt FW, Marcu KB. 1987. Immunoglobulin heavy chain switch region recombination within a retroviral vector in murine pre-B cells.. EMBO J. 6:557–84 [Google Scholar]
  89. Ballantyne J, Henry DL, Marcu KB. 1997. Antibody class switch recombinase activity is B cell stage specific and functions stochastically in the absence of ‘targeted accessibility’ control.. Int. Immunol. 9:963–74 [Google Scholar]
  90. Gu H, Zou YR, Rajewsky K. 1993. Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting.. Cell 73:1155–64 [Google Scholar]
  91. Jung S, Rajewsky K, Radbruch A. 1993. Shutdown of class switch recombination by deletion of a switch region control element.. Science 259:984–87 [Google Scholar]
  92. Zhang J, Bottaro A, Li S, Stewart V, Alt FW. 1993. A selective defect in IgG2b switching as a result of targeted mutation of the Iγ2b promoter and exon.. EMBO J. 12:3529–37 [Google Scholar]
  93. Seidl KJ, Bottaro A, Vo A, Zhang J, Davidson L, Alt FW. 1998. An expressed neo(r) cassette provides required functions of the Iγ2b exon for class switching.. Int. Immunol. 10:1683–92 [Google Scholar]
  94. Li MJ, Chung W, Maizels N. 1997. Developmental specificity of immunoglobulin heavy chain switch region recombination activities.. Mol. Immunol. 34:201–8 [Google Scholar]
  95. Ballantyne J, Henry DL, Muller JR, Briere F, Snapper CM, Kehry M, Marcu KB. 1998. Efficient recombination of a switch substrate retrovector in CD40–activated B lymphocytes: implications for the control of CH gene switch recombination.. J. Immunol. 161:1336–47 [Google Scholar]
  96. Stavnezer NJ, Sirlin S. 1986. Specificity of immunoglobulin heavy chain switch correlates with activity of germline heavy chain genes prior to switching.. EMBO J. 5:95–102 [Google Scholar]
  97. Yancopoulos GD, DePinho RA, Zimmerman KA, Lutzker SG, Rosenberg N, Alt FW. 1986. Secondary genomic rearrangement events in pre-B cells: VHDJH replacement by a LINE-1 sequence and directed class switching.. EMBO J. 5:3259–66 [Google Scholar]
  98. Bottaro A, Lansford R, Xu L, Zhang J, Rothman P, Alt FW. 1994. S region transcription per se promotes basal IgE class switch recombination but additional factors regulate the efficiency of the process.. EMBO J. 13:665–74 [Google Scholar]
  99. Bottaro A, Young F, Chen J, Serwe M, Sablitzky F, Alt FW. 1998. Deletion of the IgH intronic enhancer and associated matrix-attachment regions decreases, but does not abolish, class switching at the μ locus.. Int. Immunol. 10:799–806 [Google Scholar]
  100. Harriman GR, Bradley A, Das S, Rogers Fani P, Davis AC. 1996. IgA class switch in Iα exon-deficient mice.. Role of germline transcription in class switch recombination J. Clin. Invest. 97:477–85 [Google Scholar]
  101. Qiu G, Harriman GR, Stavnezer J. 1999. Iα exon-replacement mice synthesize a spliced HPRT-Cα transcript which may explain their ability to switch to IgA.. Inhibition of switching to IgG in these mice Int. Immunol. 11:37–46 [Google Scholar]
  102. Sakai E, Bottaro A, Alt FW. 1999. The Ig heavy chain intronic enhancer core region is necessary and sufficient to promote efficient class switch recombination.. Int. Immunol. 11:1709–13 [Google Scholar]
  103. Seidl KJ, Manis JP, Bottaro A, Zhang J, Davidson L, Kisselgof A, Oettgen H, Alt FW. 1999. Position-dependent inhibition of class-switch recombination by PGK-neor cassettes inserted into the immunoglobulin heavy chain constant region locus.. Proc. Natl. Acad. Sci. USA 96:3000–5 [Google Scholar]
  104. Xu L, Gorham B, Li SC, Bottaro A, Alt FW, Rothman P. 1993. Replacement of germ-line ϵ promoter by gene targeting alters control of immunoglobulin heavy chain class switching.. Proc. Natl. Acad. Sci. USA 90:3705–9 [Google Scholar]
  105. Cogne M, Lansford R, Bottaro A, Zhang J, Gorman J, Young F, Cheng HL, Alt FW. 1994. A class switch control region at the 3′ end of the immunoglobulin heavy chain locus.. Cell 77:737–47 [Google Scholar]
  106. Manis JP, van der Stoep N, Tian M, Ferrini R, Davidson L, Bottaro A, Alt FW. 1998. Class switching in B cells lacking 3′ immunoglobulin heavy chain enhancers.. J. Exp. Med. 188:1421–31 [Google Scholar]
  107. Nakamura M, Kondo S, Sugai M, Nazarea M, Imamura S, Honjo T. 1996. High frequency class switching of an IgM+B lymphoma clone CH12F3 to IgA+ cells.. Int. Immunol. 8:193–201 [Google Scholar]
  108. Muramatsu M, Sankaranand VS, Anant S, Sugai M, Kinoshita K, Davidson NO, Honjo T. 1999. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells.. J. Biol. Chem. 274:18470–76 [Google Scholar]
  109. Lee C-G, Kinoshita K, Arudchandran A, Cerritelli SM, Crouch RJ, Honjo T. 2001. Quantitative regulation of class switch recombination by S region transcription.. J. Exp. Med. 194:365–74 [Google Scholar]
  110. Zhang J, Alt FW, Honjo T. 1995. Regulation of class switch recombination of the immunoglobulin heavy chain genes. In Immunoglobulin Genes, ed. T Honjo, FW Alt 235–65 London: Academic [Google Scholar]
  111. Ferlin WG, Severinson E, Strom L, Heath AW, Coffman RL, Ferrick DA, Howard MC. 1996. CD40 signaling induces interleukin-4–independent IgE switching in vivo.. Eur J. Immunol. 26:2911–15 [Google Scholar]
  112. Ford GS, Yin CH, Barnhart B, Sztam K, Covey LR. 1998. CD40 ligand exerts differential effects on the expression of Iγ transcripts in subclones of an IgM+ human B cell lymphoma line.. J. Immunol. 160:595–605 [Google Scholar]
  113. Fujieda S, Saxon A, Zhang K. 1996. Direct evidence that γ1 and γ3 switching in human B cells is interleukin-10 dependent.. Mol. Immunol. 33:1335–43 [Google Scholar]
  114. Linehan LA, Warren WD, Thompson PA, Grusby MJ, Berton MT. 1998. STAT6 is required for IL-4–induced germline Ig gene transcription and switch recombination.. J. Immunol. 161:302–10 [Google Scholar]
  115. Mizoguchi C, Uehara S, Akira S, Takatsu K. 1999. IL-5 induces IgG1 isotype switch recombination in mouse CD38–activated sIgD-positive B lymphocytes.. J. Immunol. 162:2812–19 [Google Scholar]
  116. Tokuyama H, Tokuyama Y. 1997. Retinoic acid induces the expression of germ-line Cα transcript mainly by a TGF-β-independent mechanism.. Cell. Immunol. 176:14–21 [Google Scholar]
  117. Yanagihara Y, Basaki Y, Ikizawa K, Kajiwara K. 1997. Possible role of nuclear factor-κB activity in germline Cϵ transcription in a human Burkitt lymphoma B cell line.. Cell. Immunol. 176:66–74 [Google Scholar]
  118. Zan H, Cerutti A, Dramitinos P, Schaffer A, Casali P. 1998. CD40 engagement triggers switching to IgA1 and IgA2 in human B cells through induction of endogenous TGF-β: evidence for TGF-β but not IL-10–dependent direct Sμ→Sα and sequential Sμ→Sγ, Sγ→Sα DNA recombination.. J. Immunol. 161:5217–25 [Google Scholar]
  119. Ezernieks J, Schnarr B, Metz K, Duschl A. 1996. The human IgE germline promoter is regulated by interleukin-4, interleukin-13, interferon-α and interferon-γ via an interferon-γ-activated site and its flanking regions.. Eur. J. Biochem. 240:667–73 [Google Scholar]
  120. Iciek LA, Delphin SA, Stavnezer J. 1997. CD40 cross-linking induces Ig ϵ germline transcripts in B cells via activation of NF-κB: synergy with IL-4 induction.. J. Immunol. 158:4769–79 [Google Scholar]
  121. Jumper MD, Fujita K, Lipsky PE, Meek K. 1996. A CD30 responsive element in the germline ϵ promoter that is distinct from and inhibitory to the CD40 response element.. Mol. Immunol. 33:965–72 [Google Scholar]
  122. Lin SC, Stavnezer J. 1996. Activation of NF-κB/Rel by CD40 engagement induces the mouse germ line immunoglobulin Cγ1 promoter.. Mol. Cell. Biol. 16:4591–603 [Google Scholar]
  123. Lin SC, Wortis HH, Stavnezer J. 1998. The ability of CD40L, but not lipopolysaccharide, to initiate immunoglobulin switching to immunoglobulin G1 is explained by differential induction of NF-κB/Rel proteins.. Mol. Cell. Biol. 18:5523–32 [Google Scholar]
  124. Messner B, Stutz AM, Albrecht B, Peiritsch S, Woisetschlager M. 1997. Cooperation of binding sites for STAT6 and NF-κB/rel in the IL-4–induced up-regulation of the human IgE germline promoter.. J. Immunol. 159:3330–37 [Google Scholar]
  125. Pan Q, Petit-Frere C, Stavnezer J, Hammarstrom L. 2000. Regulation of the promoter for human immunoglobulin γ3 germ-line transcription and its interaction with the 3′α enhancer.. Eur. J. Immunol. 30:1019–29 [Google Scholar]
  126. Pan Q, Petit-Frere C, Hammarstrom L. 2000. An allotype-associated polymorphism in the γ3 promoter determines the germ-line γ3 transcriptional rate but does not influence switching and subsequent IgG3 production.. Eur. J. Immunol. 30:2388–93 [Google Scholar]
  127. Pardali E, Xie XQ, Tsapogas P, Itoh S, Arvanitidis K, Heldin CH, ten Dijke P, Grundstrom T, Sideras P. 2000. Smad and AML proteins synergistically confer transforming growth factor β1 responsiveness to human germ-line IgA genes.. J. Biol. Chem. 275:3552–60 [Google Scholar]
  128. Strom L, Laurencikiene J, Miskiniene A, Severinson E. 1999. Characterization of CD40–dependent immunoglobulin class switching.. Scand. J. Immunol. 49:523–32 [Google Scholar]
  129. Warren WD, Roberts KL, Linehan LA, Berton MT. 1999. Regulation of the germline immunoglobulin Cγ1 promoter by CD40 ligand and IL-4: dual role for tandem NF-κB binding sites.. Mol. Immunol. 36:31–44 [Google Scholar]
  130. Xie XQ, Pardali E, Holm M, Sideras P, Grundstrom T. 1999. AML and Ets proteins regulate the Iα1 germ-line promoter.. Eur. J. Immunol. 29:488–98 [Google Scholar]
  131. Sakai E, Bottaro A, Davidson L, Sleckman BP, Alt FW. 1999. Recombination and transcription of the endogenous Ig heavy chain locus is effected by the Ig heavy chain intronic enhancer core region in the absence of the matrix attachment regions.. Proc. Natl. Acad. Sci. USA 96:1526–31 [Google Scholar]
  132. Radcliffe G, Lin Y-C, Julius M, Marcu KB, Stavnezer J. 1990. Structure of germ line immunoglobulin α heavy-chain RNA and its location on polysomes.. Mol. Cell. Biol. 10:382–86 [Google Scholar]
  133. Bachl J, Turck CW, Wabl M. 1996. Translatable immunoglobulin germ-line transcript.. Eur. J. Immunol. 26:870–74 [Google Scholar]
  134. Kinoshita K, Honjo T. 2000. Unique and unprecedented recombination mechanisms in class switching.. Curr. Opin. Immunol. 12:195–98 [Google Scholar]
  135. Tashiro J, Kinoshita K, Honjo T. 2001. Palindromic but not G-rich sequences are targets of class switch recombination.. Int. Immunol. 13:495–505 [Google Scholar]
  136. Storb U, Peters A, Klotz E, Kim N, Shen HM, Hackett J, Rogerson B, Martin TE. 1998. cis-acting sequences that affect somatic hypermutation of Ig genes.. Immunol. Rev. 162:153–60 [Google Scholar]
  137. Gnatt AL, Cramer P, Fu J, Bushnell DA, Kornberg RD. 2001. Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 Å resolution.. Science 292:1876–82 [Google Scholar]
  138. Kataoka T, Miyata T, Honjo T. 1981. Repetitive sequences in class-switch recombination regions of immunoglobulin heavy chain genes.. Cell 23:357–68 [Google Scholar]
  139. Reaban ME, Griffin JA. 1990. Induction of RNA-stabilized DNA conformers by transcription of an immunoglobulin switch region.. Nature 348:342–44 [Google Scholar]
  140. Daniels GA, Lieber MR. 1995. RNA: DNA complex formation upon transcription of immunoglobulin switch regions: implications for the mechanism and regulation of class switch recombination.. Nucleic Acids Res. 23:5006–11 [Google Scholar]
  141. Tian M, Alt FW. 2000. Transcription-induced cleavage of immunoglobulin switch regions by nucleotide excision repair nucleases in vitro.. J. Biol. Chem. 275:24163–72 [Google Scholar]
  142. Sen D, Gilbert W. 1988. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis.. Nature 334:364–66 [Google Scholar]
  143. McBlane JF, van Gent DC, Ramsden DA, Romeo C, Cuomo CA, Gellert M, Oettinger MA. 1995. Cleavage at a V(D)J recombination signal requires only RAG1 and RAG2 proteins and occurs in two steps.. Cell 83:387–95 [Google Scholar]
  144. Wuerffel RA, Du J, Thompson RJ, Kenter AL. 1997. Ig Sγ3 DNA-specifc double strand breaks are induced in mitogen-activated B cells and are implicated in switch recombination.. J. Immunol. 159:4139–44 [Google Scholar]
  145. Wuerffel R, Jamieson CE, Morgan L, Merkulov GV, Sen R, Kenter AL. 1992. Switch recombination breakpoints are strictly correlated with DNA recognition motifs for immunoglobulin Sγ3 DNA-binding proteins.. J. Exp. Med. 176:339–49 [Google Scholar]
  146. Kenter AL, Wuerffel R, Sen R, Jamieson CE, Merkulov GV. 1993. Switch recombination breakpoints occur at nonrandom positions in the Sγ tandem repeat.. J. Immunol. 151:4718–31 [Google Scholar]
  147. Du J, Zhu Y, Shanmugam A, Kenter AL. 1997. Analysis of immunoglobulin Sγ3 recombination breakpoints by PCR: implications for the mechanism of isotype switching.. Nucleic Acids Res. 25:3066–73 [Google Scholar]
  148. Zhao Y, Rabbani H, Shimizu A, Hammarstrom L. 2000. Mapping of the chicken immunoglobulin heavy-chain constant region gene locus reveals an inverted α gene upstream of a condensed ϵ gene.. Immunology 101:348–53 [Google Scholar]
  149. Kinoshita K, Lee C-G, Tashiro J, Muramatsu M, Chen X-C, Yoshikawa K, Honjo T. 1999. Molecular mechanism of immunoglobulin class switch recombination. Cold Spring Harbor Symp. Quantitative Biol. Signaling Gene Expression in the Immune System pp. 217–26 New York: Cold Spring Harbor Lab. Press [Google Scholar]
  150. Chen X, Kinoshita K, Honjo T. 2001. Variable deletion and duplication at recombination junction ends: implication for staggered double-strand cleavage in class switch recombination.. Proc. Natl. Acad. Sci. USA In press [Google Scholar]
  151. Li MJ, Peakman MC, Golub EI, Reddy G, Ward DC, Radding CM, Maizels N. 1996. Rad51 expression and localization in B cells carrying out class switch recombination.. Proc. Natl. Acad. Sci. USA 93:10222–27 [Google Scholar]
  152. Li MJ, Maizels N. 1997. Nuclear Rad51 foci induced by DNA damage are distinct from Rad51 foci associated with B cell activation and recombination.. Exp. Cell Res. 237:93–100 [Google Scholar]
  153. Peakman MC, Maizels N. 1998. Localization of splenic B cells activated for switch recombination by in situ hybridization with Iγ1 switch transcript and Rad51 probes.. J. Immunol. 161:4008–15 [Google Scholar]
  154. Essers J, Hendriks RW, Swagemakers SM, Troelstra C, de Wit J, Bootsma D, Hoeijmakers JH, Kanaar R. 1997. Disruption of mouse RAD54 reduces ionizing radiation resistance and homologous recombination.. Cell 89:195–204 [Google Scholar]
  155. Kenter AL, Tredup J. 1991. High expression of a 3′—5′ exonuclease activity is specific to B lymphocytes.. Mol. Cell. Biol. 11:4398–404 [Google Scholar]
  156. Muller JR, Marcu KB. 1998. Stimulation of murine B lymphocytes induces a DNA exonuclease whose activity on switch-μ DNA is specifically inhibited by other germ-line switch region RNAs.. J. Immunol. 160:3337–41 [Google Scholar]
  157. Dunnick W, Wilson M, Stavnezer J. 1989. Mutations, duplication, and deletion of recombined switch regions suggest a role for DNA replication in the immunoglobulin heavy-chain switch.. Mol. Cell. Biol. 9:1850–56 [Google Scholar]
  158. Li J, Daniels GA, Lieber MR. 1996. Asymmetric mutation around the recombination break point of immunoglobulin class switch sequences on extrachromosomal substrates.. Nucleic Acids Res. 24:2104–11 [Google Scholar]
  159. Friedberg EC, Feaver WJ, Gerlach VL. 2000. The many faces of DNA polymerases:strategies for mutagenesis and for mutational avoidance.. Proc. Natl. Acad. Sci. USA 97:5681–83 [Google Scholar]
  160. Kim N, Kage K, Matsuda F, Lefranc MP, Storb U. 1997. B lymphocytes of xeroderma pigmentosum or Cockayne syndrome patients with inherited defects in nucleotide excision repair are fully capable of somatic hypermutation of immunoglobulin genes.. J. Exp. Med. 186:413–19 [Google Scholar]
  161. Shen HM, Cheo DL, Friedberg E, Storb U. 1997. The inactivation of the XP-C gene does not affect somatic hypermutation or class switch recombination of immunoglobulin genes.. Mol. Immunol. 34:527–33 [Google Scholar]
  162. Ehrenstein MR, Neuberger MS. 1999. Deficiency in Msh2 affects the efficiency and local sequence specificity of immunoglobulin class-switch recombination: parallels with somatic hypermutation.. EMBO J. 18:3484–90 [Google Scholar]
  163. Schrader CE, Edelmann W, Kucherlapati R, Stavnezer J. 1999. Reduced isotype switching in splenic B cells from mice deficient in mismatch repair enzymes.. J. Exp. Med. 190:323–30 [Google Scholar]
  164. Mizuta TR, Fukita Y, Miyoshi T, Shimizu A, Honjo T. 1993. Isolation of cDNA encoding a binding protein specific to 5′-phosphorylated single-stranded DNA with G-rich sequences.. Nucleic Acids Res. 21:1761–66 [Google Scholar]
  165. Zhang Q, Wang YC, Montalvo EA. 1999. Sμbp-2 represses the Epstein-Barr virus lytic switch promoter.. Virology 255:160–70 [Google Scholar]
  166. Cox GA, Mahaffey CL, Frankel WN. 1998. Identification of the mouse neuromuscular degeneration gene and mapping of a second site suppressor allele.. Neuron 21:1327–37 [Google Scholar]
  167. Miao M, Chan SL, Fletcher GL, Hew CL. 2000. The rat ortholog of the presumptive flounder antifreeze enhancer-binding protein is a helicase domain-containing protein.. Eur. J. Biochem. 267:7237–46 [Google Scholar]
  168. Sebastiani G, Durocher D, Gros P, Nemer M, Malo D. 1995. Localization of the Catf1 transcription factor gene to mouse chromosome 19.. Mamm. Genome 6:147–48 [Google Scholar]
  169. Schultz CL, Elenich LA, Dunnick WA. 1991. Nuclear protein binding to octamer motifs in the immunoglobulin γ1 switch region.. Int. Immunol. 3:109–16 [Google Scholar]
  170. Waters SH, Saikh KU, Stavnezer J. 1989. A B-cell-specific nuclear protein that binds to DNA sites 5′ to immunoglobulin Sα tandem repeats is regulated during differentiation.. Mol. Cell. Biol. 9:5594–601 [Google Scholar]
  171. Ma L, Hu B, Kenter AL. 1997. Ig Sγ-specific DNA binding protein SNAP is related to the helix-loop-helix transcription factor E47.. Int. Immunol. 9:1021–29 [Google Scholar]
  172. Xu L, Kim MG, Marcu KB. 1992. Properties of B cell stage specific and ubiquitous nuclear factors binding to immunoglobulin heavy chain gene switch regions.. Int. Immunol. 4:875–87 [Google Scholar]
  173. Miranda GA, Chokler I, Aguilera RJ. 1995. The murine nucleolin protein is an inducible DNA and ATP binding protein which is readily detected in nuclear extracts of lipopolysaccharide-treated splenocytes.. Exp. Cell Res. 217:294–308 [Google Scholar]
  174. Goldfarb AN, Flores JP, Lewandowska K. 1996. Involvement of the E2A basic helix-loop-helix protein in immunoglobulin heavy chain class switching.. Mol. Immunol. 33:947–56 [Google Scholar]
  175. Quong MW, Harris DP, Swain SL, Murre C. 1999. E2A activity is induced during B-cell activation to promote immunoglobulin class switch recombination.. EMBO J. 18:6307–18 [Google Scholar]
  176. Williams M, Maizels N. 1991. LR1, a lipopolysaccharide-responsive factor with binding sites in the immunoglobulin switch regions and heavy-chain enhancer.. Genes Dev. 5:2353–61 [Google Scholar]
  177. Hanakahi LA, Dempsey LA, Li MJ, Maizels N. 1997. Nucleolin is one component of the B cell-specific transcription factor and switch region binding protein, LR1.. Proc. Natl. Acad. Sci. USA 94:3605–10 [Google Scholar]
  178. Dempsey LA, Hanakahi LA, Maizels N. 1998. A specific isoform of hnRNP D interacts with DNA in the LR1 heterodimer: canonical RNA binding motifs in a sequence-specific duplex DNA binding protein.. J. Biol. Chem. 273:29224–29 [Google Scholar]
  179. Hanakahi LA, Maizels N. 2000. Transcriptional activation by LR1 at the Eμ enhancer and switch region sites.. Nucleic Acids Res. 28:2651–57 [Google Scholar]
  180. Chung IK, Mehta VB, Spitzner JR, Muller MT. 1992. Eukaryotic topoisomerase II cleavage of parallel stranded DNA tetraplexes.. Nucleic Acids Res. 20:1973–77 [Google Scholar]
  181. Borggrefe T, Wabl M, Akhmedov AT, Jessberger R. 1998. A B-cell-specific DNA recombination complex.. J. Biol. Chem. 273:17025–35 [Google Scholar]
  182. Borggrefe T, Masat L, Wabl M, Riwar B, Cattoretti G, Jessberger R. 1999. Cellular, intracellular, and developmental expression patterns of murine SWAP-70.. Eur. J. Immunol. 29:1812–22 [Google Scholar]
  183. Masat L, Caldwell J, Armstrong R, Khoshnevisan H, Jessberger R, Herndier B, Wabl M, Ferrick D. 2000. Association of SWAP-70 with the B cell antigen receptor complex.. Proc. Natl. Acad. Sci. USA 97:2180–84 [Google Scholar]
  184. Lyon CJ, Miranda GA, Piao JS, Aguilera RJ. 1996. Characterization of an endonuclease activity which preferentially cleaves the G-rich immunoglobulin switch repeat sequences.. Mol. Immunol. 33:157–69 [Google Scholar]
  185. Lyon CJ, Aguilera RJ. 1997. Purification and characterization of the immunoglobulin switch sequence-specific endonuclease (Endo-SR) from bovine spleen.. Mol. Immunol. 34:209–19 [Google Scholar]
  186. Wu TT, Kabat EA, Bilofsky H. 1979. Some sequence similarities among cloned mouse DNA segments that code for λ and κ light chains of immunoglobulins.. Proc. Natl. Acad. Sci. USA 76:4617–21 [Google Scholar]
  187. Bachl J, Steinberg C, Wabl M. 1997. Critical test of hot spot motifs for immunoglobulin hypermutation.. Eur. J. Immunol. 27:3398–403 [Google Scholar]
  188. Dorner T, Brezinschek HP, Brezinschek RI, Foster SJ, Domiati-Saad R, Lipsky PE. 1997. Analysis of the frequency and pattern of somatic mutations within nonproductively rearranged human variable heavy chain genes.. J. Immunol. 158:2779–89 [Google Scholar]
  189. Rogozin IB, Kolchanov NA. 1992. Somatic hypermutagenesis in immunoglobulin genes.. II. Influence of neighbouring base sequences on mutagenesis Biochim. Biophys. Acta 1171:11–18 [Google Scholar]
  190. Foster SJ, Dorner T, Lipsky PE. 1999. Somatic hypermutation of VκJκ rearrangements: targeting of RGYW motifs on both DNA strands and preferential selection of mutated codons within RGYW motifs.. Eur. J. Immunol. 29:4011–21 [Google Scholar]
  191. Monson NL, Dorner T, Lipsky PE. 2000. Targeting and selection of mutations in human Vλ rearrangements.. Eur. J. Immunol. 30:1597–605 [Google Scholar]
  192. Lebecque SG, Gearhart PJ. 1990. Boundaries of somatic mutation in rearranged immunoglobulin genes: 5′ boundary is near the promoter, and 3′ boundary is approximately 1 kb from V(D)J gene.. J. Exp. Med. 172:1717–27 [Google Scholar]
  193. Betz AG, Rada C, Pannell R, Milstein C, Neuberger MS. 1993. Passenger transgenes reveal intrinsic specificity of the antibody hypermutation mechanism: clustering, polarity, and specific hot spots.. Proc. Natl. Acad. Sci. USA 90:2385–88 [Google Scholar]
  194. Dorner T, Foster SJ, Farner NL, Lipsky PE. 1998. Somatic hypermutation of human immunoglobulin heavy chain genes: targeting of RGYW motifs on both DNA strands.. Eur. J. Immunol. 28:3384–96 [Google Scholar]
  195. Goyenechea B, Milstein C. 1996. Modifying the sequence of an immunoglobulin V-gene alters the resulting pattern of hypermutation.. Proc. Natl. Acad. Sci. USA 93:13979–84 [Google Scholar]
  196. Oprea M, Cowell LG, Kepler TB. 2001. The targeting of somatic hypermutation closely resembles that of meiotic mutation.. J. Immunol. 166:892–99 [Google Scholar]
  197. Pasqualucci L, Migliazza A, Fracchiolla N, William C, Neri A, Baldini L, Chaganti RS, Klein U, Kuppers R, Rajewsky K, Dalla-Favera R. 1998. BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci.. Proc. Natl. Acad. Sci. USA 95:11816–21 [Google Scholar]
  198. Shen HM, Peters A, Baron B, Zhu X, Storb U. 1998. Mutation of BCL-6 gene in normal B cells by the process of somatic hypermutation of Ig genes.. Science 280:1750–52 [Google Scholar]
  199. Muschen M, Re D, Jungnickel B, Diehl V, Rajewsky K, Kuppers R. 2000. Somatic mutation of the CD95 gene in human B cells as a side-effect of the germinal center reaction.. J. Exp. Med. 192:1833–40 [Google Scholar]
  200. Pasqualucci L, Neumeister P, Goossens T, Nanjangud G, Chaganti RS, Kuppers R, Dalla-Favera R. 2001. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas.. Nature 412:341–46 [Google Scholar]
  201. Rabbitts TH, Forster A, Baer R, Hamlyn PH. 1983. Transcription enhancer identified near the human Cμ immunoglobulin heavy chain gene is unavailable to the translocated c-myc gene in a Burkitt lymphoma.. Nature 306:806–9 [Google Scholar]
  202. Taub R, Kelly K, Battey J, Latt S, Lenoir GM, Tantravahi U, Tu Z, Leder P. 1984. A novel alteration in the structure of an activated c-myc gene in a variant t(2;8) Burkitt lymphoma.. Cell 37:511–20 [Google Scholar]
  203. Klotz EL, Hackett J, Storb U. 1998. Somatic hypermutation of an artificial test substrate within an Igκ transgene.. J. Immunol. 161:782–90 [Google Scholar]
  204. Peters A, Storb U. 1996. Somatic hypermutation of immunoglobulin genes is linked to transcription initiation.. Immunity 4:57–65 [Google Scholar]
  205. Yelamos J, Klix N, Goyenechea B, Lozano F, Chui YL, Gonzalez Fernandez A, Pannell R, Neuberger MS, Milstein C. 1995. Targeting of non-Ig sequences in place of the V segment by somatic hypermutation.. Nature 376:225–29 [Google Scholar]
  206. Azuma T, Motoyama N, Fields LE, Loh DY. 1993. Mutations of the chloramphenicol acetyl transferase transgene driven by the immunoglobulin promoter and intron enhancer.. Int. Immunol. 5:121–30 [Google Scholar]
  207. Storb U, Klotz EL, Hackett J, Kage K, Bozek G, Martin TE. 1998. A hypermutable insert in an immunoglobulin transgene contains hotspots of somatic mutation and sequences predicting highly stable structures in the RNA transcript.. J. Exp. Med. 188:689–98 [Google Scholar]
  208. Kolchanov NA, Solovyov VV, Rogozin IB. 1987. Peculiarities of immunoglobulin gene structures as a basis for somatic mutation emergence.. FEBS Lett. 214:87–91 [Google Scholar]
  209. Brenner S, Milstein C. 1966. Origin of antibody variation.. Nature 211:242–43 [Google Scholar]
  210. Tumas-Brundage K, Manser T. 1997. The transcriptional promoter regulates hypermutation of the antibody heavy chain locus.. J. Exp. Med. 185:239–50 [Google Scholar]
  211. Fukita Y, Jacobs H, Rajewsky K. 1998. Somatic hypermutation in the heavy chain locus correlates with transcription.. Immunity 9:105–14 [Google Scholar]
  212. Bachl J, Carlson C, Gray-Schopfer V, Dessing M, Olsson C. 2001. Increased transcription levels induce higher mutation rates in a hypermutating cell line.. J. Immunol. 166:5051–57 [Google Scholar]
  213. Jolly C, Neuberger M. 2001. Somatic hypermutation of immunoglobulin κ transgenes: association of mutability with demethylation.. Immunol. Cell Biol. 79:18–22 [Google Scholar]
  214. Lichtenstein M, Keini G, Cedar H, Bergman Y. 1994. B cell-specific demethylation: a novel role for the intronic κ chain enhancer sequence.. Cell 76:913–23 [Google Scholar]
  215. Rada C, Yelamos J, Dean W, Milstein C. 1997. The 5′ hypermutation boundary of κ chains is independent of local and neighbouring sequences and related to the distance from the initiation of transcription.. Eur. J. Immunol. 27:3115–20 [Google Scholar]
  216. Winter DB, Sattar N, Mai JJ, Gearhart PJ. 1997. Insertion of 2 kb of bacteriophage DNA between an immunoglobulin promoter and leader exon stops somatic hypermutation in a κ transgene.. Mol. Immunol. 34:359–66 [Google Scholar]
  217. Bachl J, Olsson C, Chitkara N, Wabl M. 1998. The Ig mutator is dependent on the presence, position, and orientation of the large intron enhancer.. Proc. Natl. Acad. Sci. USA 95:2396–99 [Google Scholar]
  218. Betz AG, Milstein C, Gonzalez-Fernandez A, Pannell R, Larson T, Neuberger MS. 1994. Elements regulating somatic hypermutation of an immunoglobulin κ gene: critical role for the intron enhancer/matrix attachment region.. Cell 77:239–48 [Google Scholar]
  219. Goyenechea B, Klix N, Yelamos J, Williams GT, Riddell A, Neuberger MS, Milstein C. 1997. Cells strongly expressing Igκ transgenes show clonal recruitment of hypermutation: a role for both MAR and the enhancers.. EMBO J. 16:3987–94 [Google Scholar]
  220. Klix N, Jolly CJ, Davies SL, Bruggemann M, Williams GT, Neuberger MS. 1998. Multiple sequences from downstream of the Jκ cluster can combine to recruit somatic hypermutation to a heterologous, upstream mutation domain.. Eur. J. Immunol. 28:317–26 [Google Scholar]
  221. van der Stoep N, Gorman JR, Alt FW. 1998. Reevaluation of 3′Eκ function in stage- and lineage-specific rearrangement and somatic hypermutation.. Immunity 8:743–50 [Google Scholar]
  222. Sale JE, Neuberger MS. 1998. TdT-accessible breaks are scattered over the immunoglobulin V domain in a constitutively hypermutating B cell line.. Immunity 9:859–69 [Google Scholar]
  223. Goossens T, Klein U, Kuppers R. 1998. Frequent occurrence of deletions and duplications during somatic hypermutation: implications for oncogene translocations and heavy chain disease.. Proc. Natl. Acad. Sci. USA 95:2463–68 [Google Scholar]
  224. Wilson PC, de Bouteiller O, Liu YJ, Potter K, Banchereau J, Capra JD, Pascual V. 1998. Somatic hypermutation introduces insertions and deletions into immunoglobulin V genes.. J. Exp. Med. 187:59–70 [Google Scholar]
  225. Bross L, Fukita Y, McBlane F, Demolliere C, Rajewsky K, Jacobs H. 2000. DNA double-strand breaks in immunoglobulin genes undergoing somatic hypermutation.. Immunity 13:589–97 [Google Scholar]
  226. Papavasiliou FN, Schatz DG. 2000. Cell-cycle-regulated DNA double-stranded breaks in somatic hypermutation of immunoglobulin genes.. Nature 408:216–21 [Google Scholar]
  227. Sonoda E, Sasaki MS, Buerstedde JM, Bezzubova O, Shinohara A, Ogawa H, Takata M, Yamaguchi-Iwai Y, Takeda S. 1998. Rad51–deficient vertebrate cells accumulate chromosomal breaks prior to cell death.. EMBO J. 17:598–608 [Google Scholar]
  228. Kong Q, Maizels N. 2001. DNA breaks in hypermutating immunoglobulin genes.. Evidence for a break-and-repair pathway of somatic hypermutation Genetics 158:369–78 [Google Scholar]
  229. Bertocci B, Quint L, Delbos F, Garcia C, Reynaud CA, Weill JC. 1998. Probing immunoglobulin gene hypermutation with microsatellites suggests a nonreplicative short patch DNA synthesis process.. Immunity 9:257–65 [Google Scholar]
  230. Wiesendanger M, Kneitz B, Edelmann W, Scharff MD. 2000. Somatic hypermutation in MutS homologue MSH3–, MSH6–, and MSH3/MSH6–deficient mice reveals a role for the MSH2–MSH6 heterodimer in modulating the base substitution pattern.. J. Exp. Med. 191:579–84 [Google Scholar]
  231. Kong Q, Maizels N. 1999. PMS2–deficiency diminishes hypermutation of a λ1 transgene in young but not older mice.. Mol. Immunol. 36:83–91 [Google Scholar]
  232. Phung QH, Winter DB, Alrefai R, Gearhart PJ. 1999. Hypermutation in IgV genes from mice deficient in the MLH1 mismatch repair protein.. J. Immunol. 162:3121–24 [Google Scholar]
  233. Winter DB, Phung QH, Umar A, Baker SM, Tarone RE, Tanaka K, Liskay RM, Kunkel TA, Bohr VA, Gearhart PJ. 1998. Altered spectra of hypermutation in antibodies from mice deficient for the DNA mismatch repair protein PMS2.. Proc. Natl. Acad. Sci. USA 95:6953–58 [Google Scholar]
  234. Jacobs H, Fukita Y, van der Horst GT, de Boer J, Weeda G, Essers J, de Wind N, Engelward BP, Samson L, Verbeek S. et al. 1998. Hypermutation of immunoglobulin genes in memory B cells of DNA repair-deficient mice.. J. Exp. Med. 187:1735–43 [Google Scholar]
  235. Rada C, Ehrenstein MR, Neuberger MS, Milstein C. 1998. Hot spot focusing of somatic hypermutation in MSH2–deficient mice suggests two stages of mutational targeting.. Immunity 9:135–41 [Google Scholar]
  236. Frey S, Bertocci B, Delbos F, Quint L, Weill JC, Reynaud CA. 1998. Mismatch repair deficiency interferes with the accumulation of mutations in chronically stimulated B cells and not with the hypermutation process.. Immunity 9:127–34 [Google Scholar]
  237. Phung QH, Winter DB, Cranston A, Tarone RE, Bohr VA, Fishel R, Gearhart PJ. 1998. Increased hypermutation at G and C nucleotides in immunoglobulin variable genes from mice deficient in the MSH2 mismatch repair protein.. J. Exp. Med. 187:1745–51 [Google Scholar]
  238. Cascalho M, Wong J, Steinberg C, Wabl M. 1998. Mismatch repair co-opted by hypermutation.. Science 279:1207–10 [Google Scholar]
  239. Vora KA, Tumas-Brundage KM, Lentz VM, Cranston A, Fishel R, Manser T. 1999. Severe attenuation of the B cell immune response in Msh2–deficient mice.. J. Exp. Med. 189:471–82 [Google Scholar]
  240. Kim N, Bozek G, Lo JC, Storb U. 1999. Different mismatch repair deficiencies all have the same effects on somatic hypermutation: intact primary mechanism accompanied by secondary modifications.. J. Exp. Med. 190:21–30 [Google Scholar]
  241. Bemark M, Sale JE, Kim HJ, Berek C, Cosgrove RA, Neuberger MS. 2000. Somatic hypermutation in the absence of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) or recombination-activating gene (RAG)1 activity.. J. Exp. Med. 192:1509–14 [Google Scholar]
  242. Zan H, Komori A, Li Z, Cerutti A, Schaffer A, Flajnik MF, Diaz M, Casali P. 2001. The translesion DNA polymerase ζ plays a major role in Ig and bcl-6 somatic hypermutation.. Immunity 14:643–53 [Google Scholar]
  243. Zeng X, Winter DB, Kasmer C, Kraemer KH, Lehmann AR, Gearhart PJ. 2001. DNA polymerase η is an A-T mutator in somatic hypermutation of immunoglobulin variable genes.. Nat. Immunol. 2:537–41 [Google Scholar]
  244. Rogozin IB, Pavlov YI, Bebenek K, Matsuda T, Kunkel TA. 2001. Somatic mutation hotspots correlate with DNA polymerase η error spectrum.. Nat. Immunol. 2:530–36 [Google Scholar]
  245. Diaz M, Verkoczy LK, Flajnik MF, Klinman NR. 2001. Decreased frequency of somatic hypermutation and impaired affinity maturation but intact germinal center formation in mice expressing antisense RNA to DNA polymerase ζ.. J. Immunol. 167:327–35 [Google Scholar]
  246. Johnson RE, Washington MT, Prakash S, Prakash L. 2000. Fidelity of human DNA polymerase η.. J. Biol. Chem. 275:7447–50 [Google Scholar]
  247. Matsuda T, Bebenek K, Masutani C, Hanaoka F, Kunkel TA. 2000. Low fidelity DNA synthesis by human DNA polymerase-η.. Nature 404:1011–13 [Google Scholar]
  248. Masutani C, Kusumoto R, Iwai S, Hanaoka F. 2000. Mechanisms of accurate translesion synthesis by human DNA polymerase η.. EMBO J. 19:3100–9 [Google Scholar]
  249. Callard RE, Armitage RJ, Fanslow WC, Spriggs MK. 1993. CD40 ligand and its role in X-linked hyper-IgM syndrome.. Immunol. Today 14:559–64 [Google Scholar]
  250. Muto T, Muramatsu M, Taniwaki M, Kinoshita K, Honjo T. 2000. Isolation, tissue distribution and chromosomal localization of the human activation-induced cytidine deaminase (hAID) gene.. Genomics 68:85–88 [Google Scholar]
  251. Minegishi Y, Lavoie A, Cunningham-Rundles C, Bedard PM, Hebert J, Cote L, Dan K, Sedlak D, Buckley RH, Fischer A. et al. 2000. Mutations in activation-induced cytidine deaminase in patients with hyper IgM syndrome.. Clin. Immunol. 97:203–10 [Google Scholar]
  252. Mehta A, Kinter MT, Sherman NE, Driscoll DM. 2000. Molecular cloning of apobec-1 complementation factor, a novel RNA-binding protein involved in the editing of apolipoprotein B mRNA.. Mol. Cell Biol. 20:1846–54 [Google Scholar]
  253. Lellek H, Kirsten R, Diehl I, Apostel F, Buck F, Greeve J. 2000. Purification and molecular cloning of a novel essential component of the apolipoprotein B mRNA editing enzyme-complex.. J. Biol. Chem. 275:19848–56 [Google Scholar]
  254. Jacobs H, Bross L. 2001. Towards an understanding of somatic hypermutation.. Curr. Opin. Immunol. 13:208–18 [Google Scholar]
  255. Takata M, Sasaki MS, Sonoda E, Morrison C, Hashimoto M, Utsumi H, Yamaguchi-Iwai Y, Shinohara A, Takeda S. 1998. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells.. EMBO J. 17:5497–508 [Google Scholar]
  256. Lundgren M, Strom L, Bergquist LO, Skog S, Heiden T, Stavnezer J, Severinson E. 1995. Cell cycle regulation of immunoglobulin class switch recombination and germ-line transcription: potential role of Ets family members.. Eur. J. Immunol. 25:2042–51 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error