1932

Abstract

Atomic force microscopy is an imaging tool used widely in fundamental research, although it has, like other scanned probe microscopies, provided only limited information about the chemical nature of systems studied. Modification of force microscope probe tips by covalent linking of organic monolayers that terminate in well-defined functional groups enables direct probing of molecular interactions and imaging with chemical sensitivity. This new chemical force microscopy technique has been used to probe adhesion and frictional forces between distinct chemical groups in organic and aqueous solvents. Contact mechanics provide a framework to model the adhesive forces and to estimate the number of interacting molecular groups. In general, measured adhesive and frictional forces follow trends expected from the strengths of the molecular interactions, although solvation also plays an important role. Knowledge of these forces provides a basis for rationally interpretable mapping of a variety of chemical functionalities and processes such as protonation and ionization.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.matsci.27.1.381
1997-08-01
2024-04-18
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.matsci.27.1.381
Loading
/content/journals/10.1146/annurev.matsci.27.1.381
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error