1932

Abstract

We review the recent progress in our understanding of the mechanical and electrical properties of carbon nanotubes, emphasizing the theoretical aspects. Nanotubes are the strongest materials known, but the ultimate limits of their strength have yet to be reached experimentally. Modeling of nanotube-reinforced composites indicates that the addition of small numbers of nanotubes may lead to a dramatic increase in the modulus, with only minimal crosslinking. Deformations in nanotube structures lead to novel structural transformations, some of which have clear electrical signatures that can be utilized in nanoscale sensors and devices. Chemical reactivity of nanotube walls is facilitated by strain, which can be used in processing and functionalization. Scanning tunneling microscopy and spectroscopy have provided a wealth of information about the structure and electronic properties of nanotubes, especially when coupled with appropriate theoretical models. Nanotubes are exceptional ballistic conductors, which can be used in a variety of nanodevices that can operate at room temperature. The quantum transport through nanotube structures is reviewed at some depth, and the critical roles played by band structure, one-dimensional confinement, and coupling to nanoscale contacts are emphasized. Because disorder or point defect–induced scattering is effectively averaged over the circumference of the nanotube, electrons can propagate ballistically over hundreds of nanometers. However, severe deformations or highly resistive contacts isolate nanotube segments and lead to the formation of quantum dots, which exhibit Coulomb blockade effects, even at room temperature. Metal-nanotube and nanotube-nanotube contacts range from highly transmissive to very resistive, depending on the symmetry of two structures, the charge transfer, and the detailed rehybridization of the wave functions. The progress in terms of nanotube applications has been extraordinarily rapid, as evidenced by the development of several nanotube-based prototypical devices, including memory and logic circuits, chemical sensors, electron emitters and electromechanical actuators.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.matsci.32.112601.134925
2002-08-01
2024-04-24
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.matsci.32.112601.134925
Loading
/content/journals/10.1146/annurev.matsci.32.112601.134925
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error