Over the past three decades, compelling evidence has emerged that the immune system can attack the nervous system with devastating consequences for human health. Either cell-mediated or humoral (antibody-mediated) autoimmune mechanisms may predominate in effecting a given disease, and either glia or neurons may fall under immune attack. A subset of these diseases has been particularly useful for understanding fundamental neuroscience as well as mechanisms of human disease. This subset involves humoral autoimmune attack on cell surface molecules subserving transmembrane signaling of excitable cells; special emphasis is placed here on proteins involved in synaptic transmission. We begin by reviewing the prototypic humoral autoimmune disease of synaptic transmission, myasthenia gravis. This provides a context for insights obtained from the study of diseases targeting molecules that regulate synaptic transmission at the neuromuscular junction and in the central nervous system. We also explore a disease where autoimmunity produces agonist antibodies acting at two distinct G-protein-coupled receptors. We conclude with an exploration of the vital issue of access of antibodies to targets within the central nervous system and the implications that such access may have in the pathogenesis of poorly understood idiopathic central nervous system diseases.


Article metrics loading...

Loading full text...

Full text loading...


Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error