We describe the formation, maturation, elimination, maintenance, and regeneration of vertebrate neuromuscular junctions (NMJs), the best studied of all synapses. The NMJ forms in a series of steps that involve the exchange of signals among its three cellular components—nerve terminal, muscle fiber, and Schwann cell. Although essentially any motor axon can form NMJs with any muscle fiber, an additional set of cues biases synapse formation in favor of appropriate partners. The NMJ is functional at birth but undergoes numerous alterations postnatally. One step in maturation is the elimination of excess inputs, a competitive process in which the muscle is an intermediary. Once elimination is complete, the NMJ is maintained stably in a dynamic equilibrium that can be perturbed to initiate remodeling. NMJs regenerate following damage to nerve or muscle, but this process differs in fundamental ways from embryonic synaptogenesis. Finally, we consider the extent to which the NMJ is a suitable model for development of neuron-neuron synapses.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Adams L, Goldman D. 1998. A role for calcium from the sarcoplasmic reticulum in coupling muscle activity to nicotonic acetylcholine receptor gene expression in rat.. J. Neurobiol. 35:245–57 [Google Scholar]
  2. Aframian D, Grinnell AD. 1988. Destabilization of junctional ACh receptors by a reinnervating frog motor nerve.. Puerto Rico Health Sci. J. 7:80–86 [Google Scholar]
  3. Altiok N, Altiok S, Changeux JP. 1997. Heregulin-stimulated acetylcholine receptor gene expression in muscle: requirement for MAP kinase and evidence for a parallel inhibitory pathway independent of electrical activity.. EMBO J. 16:717–25 [Google Scholar]
  4. Altiok N, Bessereau JL, Changeux JP. 1995. ErbB3 and ErbB2/neu mediate the effect of heregulin on acetylcholine receptor gene expression in muscle: differential expression at the endplate.. EMBO J. 14:4258–66 [Google Scholar]
  5. Anderson MJ, Cohen MW. 1977. Nerve-induced and spontaneous redistribution of acetylcholine receptors on cultured muscle cells.. J. Physiol. 268:757–73 [Google Scholar]
  6. Antony C, Huchet M, Changeux JP, Cartaud J. 1995. Developmental regulation of membrane traffic organization during synaptogenesis in mouse diaphragm muscle.. J. Cell Biol. 130:959–68 [Google Scholar]
  7. Apel Ed, Glass DJ, Moscoso LM, Yancopoulos GD, Sanes JR. 1997. Rapsyn is required for MuSK signaling and recruits synaptic components to a MuSK-containing scaffold.. Neuron 18:623–35 [Google Scholar]
  8. Apel ED, Roberds SL, Campbell KP, Merlie JP. 1995. Rapsyn may function as a link between the acetylcholine receptor and the agrin-binding dystrophin-associated glycoprotein complex.. Neuron 15:115–26 [Google Scholar]
  9. Arce V, Pollock RA, Phillippe JM, Pennica D, Henderson CE, deLapeyriere O. 1998. Synergistic effects of Schwann-derived and muscle-derived factors on motoneuron survival involve glial cell line-derived neurotrophic factor (GDNF) and cardiotrophin (CT-1).. J. Neurosci. 18:1–9 [Google Scholar]
  10. Astrow SH, Pitaevski V, Herrera AA. 1996. Precision of reinnervation and synaptic remodeling observed in neuromuscular junctions of living frogs.. J. Neurosci. 16:5130–40 [Google Scholar]
  11. Balice-Gordon RJ, Breedlove SM, Bernstein S, Lichtman JW. 1990. Neuromuscular junctions shrink and expand as muscle fiber size is manipulated: in vivo observations in the androgen-sensitive bulbocavernosus muscle of mice.. J. Neurosci. 10:2660–71 [Google Scholar]
  12. Balice-Gordon RJ, Chua CK, Nelson CC, Lichtman JW. 1993. Gradual loss of synaptic cartels precedes axon withdrawal at developing neuromuscular junctions.. Neuron 11:801–15 [Google Scholar]
  13. Balice-Gordon RJ, Lichtman JW. 1990. In vivo visualization of the growth of pre- and postsynaptic elements of neuromuscular junctions in the mouse.. J. Neurosci. 10:894–908 [Google Scholar]
  14. Balice-Gordon RJ, Lichtman JW. 1993. In vivo observations of pre- and postsynaptic changes during the transition from multiple to single innervation at developing neuromuscular junctions.. J. Neurosci. 13:834–55 [Google Scholar]
  15. Balice-Gordon RJ, Lichtman JW. 1994. Long-term synapse loss induced by focal blockade of postsynaptic receptors.. Nature 372:519–24 [Google Scholar]
  16. Balice-Gordon RJ, Thompson WJ. 1988. Synaptic rearrangements and alterations in motor unit properties in neonatal rat extensor digitorum longus muscle.. J. Physiol. 398:191–210 [Google Scholar]
  17. Barker D, Ip MC. 1966. Sprouting and degeneration of mammalian motor axons in normal and de-afferentated skeletal muscle.. Proc. R. Soc. Lond. (Biol.) 163:538–54 [Google Scholar]
  18. Barry JA, Ribchester RR. 1995. Persistent polyneuronal innervation in partially denervated rat muscle after reinnervation and recovery from prolonged nerve conduction block.. J. Neurosci. 15:6327–39 [Google Scholar]
  19. Bennett MR, Pettigrew AG. 1976. The formation of neuromuscular synapses.. Cold Spring Harbor Symp. Quant. Biol. 40:409–24 [Google Scholar]
  20. Bennett MR, Lavidis NA. 1984. Development of the topographical projection of motor neurons to a rat muscle accompanies loss of polyneuronal innervation.. J. Neurosci. 4:2204–12 [Google Scholar]
  21. Bennett M, Ho S. 1988. The formation of topographical maps in developing rat gastrocnemius muscle during synapse elimination.. J. Physiol. 396:471–96 [Google Scholar]
  22. Bessereau J-L, Laudenbach V, Le Poupon C, Changeux J-P. 1998. Nonmyogenic factors bind nicotinic acetylcholine receptor promoter elements required for response to denervation.. J. Biol. Chem. 273:12786–93 [Google Scholar]
  23. Betz WJ, Ribchester RR, Ridge RM. 1990. Competitive mechanisms underlying synapse elimination in the lumbrical muscle of the rat.. J. Neurobiol. 21:1–17 [Google Scholar]
  24. Bevan S, Steinbach JH. 1977. The distribution of a α-bungarotoxin binding sites on mammalian skeletal muscle developing in vivo.. J. Physiol. 267:195–213 [Google Scholar]
  25. Bewick GS, Young C, Slater CR. 1996. Spatial relationships of utrophin, dystrophin, β-dystroglycan and β-spectrin to acetylcholine receptor clusters during postnatal maturation of the rat neuromuscular junction.. J. Neurocytol. 25:367–79 [Google Scholar]
  26. Biroc SL, Payan DG, Fisher JM. 1993. Isoforms of agrin are widely expressed in the developing rat and may function as protease inhibitors.. Dev. Brain Res. 75:119–29 [Google Scholar]
  27. Bixby JL. 1981. Ultrastructural observations on synapse elimination in neonatal rabbit skeletal muscle.. J. Neurocytol. 10:81–100 [Google Scholar]
  28. Bloch RJ, Steinbach JH, Merlie JP, Heinemann S. 1986. Collagenase digestion alters the organization and turnover of junctional acetylcholine receptors.. Neurosci. Lett. 66:113–19 [Google Scholar]
  29. Boaro SN, Soares JC, Konig B. 1998. Comparative structural analysis of neuromuscular junctions in mice at different ages.. Ann. Anat. 180:173–79 [Google Scholar]
  30. Bowe MA, Deyst KA, Leszyk JD, Fallon JR. 1994. Identification and purification of an agrin receptor from Torpedo postsynaptic membranes: a heteromeric complex related to the dystroglycans.. Neuron 12:1173–80 [Google Scholar]
  31. Bowe MA, Fallon JR. 1995. The role of agrin in synapse formation.. Annu. Rev. Neurosci. 18:443–62 [Google Scholar]
  32. Bowen DC, Sugiyama J, Ferns M, Hall ZW. 1996. Neural agrin activates a high-affinity receptor in C2 muscle cells that is unresponsive to muscle agrin.. J. Neurosci. 16:3791–97 [Google Scholar]
  33. Brand-Saberi B, Wilting J, Ebebsperger C, Christ B. 1996. The formation of somite compartments in the avian embryo.. Int. J. Dev. Biol. 40:411–20 [Google Scholar]
  34. Brenner HR, Herczeg A, Slater CR. 1992. Synapse-specific expression of acetylcholine receptor genes and their products at original synaptic sites in rat soleus muscle fibres regenerating in the absence of innervation.. Development 116:41–53 [Google Scholar]
  35. Brown MC, Booth CM. 1983. Postnatal development of the adult pattern of motor axon distribution in rat muscle.. Nature 304:741–42 [Google Scholar]
  36. Brown MC, Holland RL, Hopkins WG. 1981. Motor nerve sprouting.. Annu. Rev. Neurosci. 4:17–42 [Google Scholar]
  37. Brown MC, Jansen JK, Van Essen D. 1976. Polyneuronal innervation of skeletal muscle in new-born rats and its elimination during maturation.. J. Physiol. 261:387–422 [Google Scholar]
  38. Buchanan J, Sun YA, Poo MD. 1989. Studies of nerve-muscle interactions in Xenopus cell culture: fine structure of early functional contacts.. J. Neurosci. 9:1540–54 [Google Scholar]
  39. Burden S. 1977. Development of the neuromuscular junction in the chick embryo: the number, distribution, and stability of acetylcholine receptors.. Dev. Biol. 57:317–29 [Google Scholar]
  40. Burden SJ, DePalma RL, Gottesman GS. 1983. Crosslinking of proteins in acetylcholine receptor-rich membranes: associated between the β-subunit and the 43 kd subsynaptic protein.. Cell 35:687–92 [Google Scholar]
  41. Burden SJ, Sargent PB, McMahan UJ. 1979. Acetylcholine receptors in regenerating muscle accumulate at original synaptic sites in the absence of the nerve.. J. Cell Biol. 82:412–25 [Google Scholar]
  42. Burgess RW, Nguyen Q, Lichtman JW, Sanes JR. 1998. A genetic analysis of agrin.. Neurosci. Abstr. 24:1534 [Google Scholar]
  43. Cajal S, Ramon Y. 1928. Reprinted 1991 Degeneration and Regeneration of the Nervous System. London: Oxford Univ. Press [Google Scholar]
  44. Calakos N, Scheller RH. 1996. Synaptic vesicle biogenesis, docking, and fusion: a molecular description.. Physiol. Rev. 76:1–29 [Google Scholar]
  45. Callaway EM, Soha JM, Van Essen DC. 1989. Differential loss of neuromuscular connections according to activity level and spinal position of neonatal rabbit soleus motor neurons.. J. Neurosci. 9:1806–24 [Google Scholar]
  46. Campagna JA, Prevette D, Oppenheim RW, Bixby JL. 1997a. Target contact regulates expression of synaptotagmin genes in spinal motor neurons in vivo.. Mol. Cell. Neurosci. 8:377–88 [Google Scholar]
  47. Campagna JA, Ruegg MA, Bixby JL. 1995. Agrin is a differentiation-inducing “stop signal” for motoneurons in vitro.. Neuron 15:1365–74 [Google Scholar]
  48. Campagna JA, Ruegg MA, Bixby JL. 1997b. Evidence that agrin directly influences presynaptic differentiation at neuromuscular junctions in vitro.. Eur. J. Neurosci. 9:2269–83 [Google Scholar]
  49. Campanelli JT, Gayer GG, Scheller RH. 1996. Alternative RNA splicing that determines agrin activity regulates binding to heparin and α-dystroglycan.. Development 122:1663–72 [Google Scholar]
  50. Campanelli JT, Roberds SL, Campbell KP, Scheller RH. 1994. A role for dystrophin-associated glycoproteins and utrophin in agrin-induced AChR clustering.. Cell 77:663–74 [Google Scholar]
  51. Cardasis CA, Padykula HA. 1981. Ultrastructural evidence indicating reorganization at the neuromuscular junction in the normal rat soleus muscle.. Anat. Rec. 200:41–59 [Google Scholar]
  52. Caroni P. 1997. Intrinsic neuronal determinants that promote axonal sprouting and elongation.. BioEssays 19:767–75 [Google Scholar]
  53. Caroni P, Aigner L, Schneider C. 1997. Intrinsic neuronal determinants locally regulate extrasynaptic and synaptic growth at the adult neuromuscular junction.. J. Cell Biol. 136:679–92 [Google Scholar]
  54. Caroni P, Becker M. 1992. The downregulation of growth-associated proteins in motoneurons at the onset of synapse elimination is controlled by muscle activity and IGF-1.. J. Neurosci. 12:3849–61 [Google Scholar]
  55. Caroni P, Rotzler S, Britt JC, Brenner HR. 1993. Calcium influx and protein phosphorylation mediate the metabolic stabilization of synaptic acetylcholine receptors in muscle.. J. Neurosci. 13:1315–25 [Google Scholar]
  56. Caroni P, Schneider C. 1994. Signaling by insulin-like growth factors in paralyzed skeletal muscle: rapid induction of IGF-1 expression in muscle fibers and prevention of interstitial cell proliferation by IGF-BP5 and IGF-BP4.. J. Neurosci. 14:3378–88 [Google Scholar]
  57. Caroni P, Schneider C, Kiefer MC, Zapf J. 1994. Role of muscle insulin-like growth factors in nerve sprouting: suppression of terminal sprouting in paralyzed muscle by IGF-binding protein 4.. J. Cell Biol. 125:893–902 [Google Scholar]
  58. Chahine KG, Walker W, Goldman D. 1992. A 102 base pair sequence of the nicotinic acetylcholine receptor delta-subunit gene confers regulation by muscle electrical activity.. Development 115:213–19 [Google Scholar]
  59. Chang D, Woo JS, Campanelli J, Scheller RH, Ignatius MJ. 1997. Agrin inhibits neurite outgrowth but promotes attachment of embryonic motor and sensory neurons.. Dev. Biol. 181:21–35 [Google Scholar]
  60. Changeux JP, Duclert A, Sekine S. 1992. Calcitonin gene-related peptides and neuromuscular interactions.. Ann. NY Acad. Sci. 657:361–78 [Google Scholar]
  61. Chen L, Ko CP. 1994. Extension of synaptic extracellular matrix during nerve terminal sprouting in living frog neuromuscular junctions.. J. Neurosci. 14:796–808 [Google Scholar]
  62. Chen LL, Folsom DB, Ko CP. 1991. The remodeling of synaptic extracellular matrix and its dynamic relationship with nerve terminals at living frog neuromuscular junctions.. J. Neurosci. 11:2920–30 [Google Scholar]
  63. Chiu AY, Sanes JR. 1984. Development of basal lamina in synaptic and extrasynaptic portions of embryonic rat muscle.. Dev. Biol. 103:456–67 [Google Scholar]
  64. Chow I, Poo MM. 1985. Release of acetylcholine from embryonic neurons upon contact with muscle cell.. J. Neurosci. 5:1076–82 [Google Scholar]
  65. Chu GC, Moscoso LM, Sliwkowski MX, Merlie JP. 1995. Regulation of the acetylcholine receptor ε subunit gene by recombinant ARIA: an in vitro model for transynaptic gene regulation.. Neuron 14:329–39 [Google Scholar]
  66. Cohen I, Rimer M, Lomo T, McMahan UJ. 1997. Agrin-induced postsynaptic-like apparatus in skeletal muscle fibers in vivo.. Mol. Cell. Neurosci. 9:237–53 [Google Scholar]
  67. Cohen MW, Godfrey EW. 1992. Early appearance of and neuronal contribution to agrin-like molecules at embryonic frog nerve-muscle synapses formed in culture.. J. Neurosci. 12:2982–92 [Google Scholar]
  68. Colman H, Lichtman JW. 1993. Interactions between nerve and muscle: synapse elimination at the developing neuromuscular junction.. Dev. Biol. 156:1–10 [Google Scholar]
  69. Colman H, Nabekura J, Lichtman JW. 1997. Alterations in synaptic strength preceding axon withdrawal.. Science 275:356–61 [Google Scholar]
  70. Connold AL, Evers JV, Vrbova G. 1986. Effect of low calcium and protease inhibitors on synapse elimination during postnatal development in the rat soleus muscle.. Brain Res. 393:99–107 [Google Scholar]
  71. Connor EA. 1997. Developmental regulation of interstitial cell density in bullfrog skeletal muscle.. J. Neurocytol. 26:23–32 [Google Scholar]
  72. Connor EA, McMahan UJ. 1987. Cell accumulation in the junctional region of denervated muscle.. J. Cell Biol. 104:109–20 [Google Scholar]
  73. Courtney J, Steinbach JH. 1981. Age changes in neuromuscular junction morphology and acetylcholine receptor distribution on rat skeletal muscle fibres.. J. Physiol. 320:435–47 [Google Scholar]
  74. Couteaux R. 1973. Motor endplate structure. In Structure and Function of Muscle, Vol. 2, ed. GH Bourne 483–530 New York: Academic
  75. Covault J, Sanes JR. 1985. Neural cell adhesion molecule (N-CAM) accumulates in denervated and paralyzed skeletal muscles.. Proc. Natl. Acad. Sci. USA 82:4544–48 [Google Scholar]
  76. Covault J, Sanes JR. 1986. Distribution of N-CAM in synaptic and extrasynaptic portions of developing and adult skeletal muscle.. J. Cell Biol. 102:716–30 [Google Scholar]
  77. Culican SM, Nelson CC, Lichtman JW. 1998. Axon withdrawal during synapse elimination at the neuromuscular junction is accompanied by disassembly of the postsynaptic specialization and withdrawal of Schwann cell processes.. J. Neurosci. 18:4953–65 [Google Scholar]
  78. Daggett DF, Cohen MW, Stone D, Nikolics K, Rauvala H, Peng HB. 1996. The role of an agrin–growth factor interaction in acetylcholine receptor clustering.. Mol. Cell. Neurosci. 8:272–85 [Google Scholar]
  79. Dai Z, Peng HB. 1993. Elevation in presynaptic Ca++ level accompanying initial nerve-muscle contact in tissue culture.. Neuron 10:827–37 [Google Scholar]
  80. Dai Z, Peng HB. 1995. Presynaptic differentiation induced in cultured neurons by local application of basic fibroblast growth factor.. J. Neurosci. 15:5466–75 [Google Scholar]
  81. Dai Z, Peng HB. 1996. From neurite to nerve terminal: induction of presynaptic differentiation by target-derived signals.. Semin. Neurosci. 8:97–106 [Google Scholar]
  82. Dai Z, Peng HB. 1998. A role of tyrosine phosphatase in acetylcholine receptor cluster dispersal and formation.. J. Cell Biol. 141:1613–24 [Google Scholar]
  83. Dale HH, Feldberg W, Vogt M. 1936. Release of acetylcholine at voluntary motor nerve endings.. J. Physiol. 86:353–80 [Google Scholar]
  84. Day NC, Wood SJ, Ince PG, Volsen SG, Smith W. et al. 1997. Differential localization of voltage-dependent calcium channel α1 subunits at the human and rat neuromuscular junction.. J. Neurosci. 17:6226–35 [Google Scholar]
  85. DeChiara TM, Bowen DC, Valenzuela DM, Simmons MV, Poueymirou WT. et al. 1996. The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo.. Cell 85:501–12 [Google Scholar]
  86. Deconinck AE, Potter AC, Tinsley JM, Wood SJ, Vater R. et al. 1997. Postsynaptic abnormalities at the neuromuscular junctions of utrophin deficient mice.. J. Cell Biol. 36:883–94 [Google Scholar]
  87. DeKoninck P, Cooper E. 1995. Differential regulation of neuronal nicotinic acetylcholine receptor subunit genes in cultured neonatal rat sympathetic neurons: specific induction of α-7 by membrane depolarization through a Ca2+/calmodulin-dependent kinase pathway.. J. Neurosci. 15:7966–78 [Google Scholar]
  88. Dennis MJ. 1981. Development of the neuromuscular junction: inductive interactions between cells.. Annu. Rev. Neurosci. 4:43–68 [Google Scholar]
  89. Denzer AJ, Brandenberger R, Gesemann M, Chiquet M, Ruegg MA. 1997. Agrin binds to the nerve-muscle basal lamina via laminin.. J. Cell Biol. 137:671–83 [Google Scholar]
  90. Denzer AJ, Gesemann M, Schumacher B, Ruegg MA. 1995. An amino-terminal extension is required for the secretion of chick agrin and its binding to extracellular matrix.. J. Cell Biol. 131:1547–60 [Google Scholar]
  91. Desaki J, Uehara Y. 1987. Formation and maturation of subneural apparatuses at neuromuscular junctions in postnatal rats: a scanning and transmission electron microscopical study.. Dev. Biol. 119:390–401 [Google Scholar]
  92. DiMario JX, Stockdale FE. 1997. Both myoblast lineage and innervation determine fiber type and are required for expression of the slow myosin heavy chain 2 gene.. Dev. Biol. 188:167–180 [Google Scholar]
  93. Donahue SP, English AW. 1989. Selective elimination of cross-compartmental innervation in rat lateral gastrocnemius muscle.. J. Neurosci. 9:1621–27 [Google Scholar]
  94. Dong Z, Brennan A, Liu N, Yarden Y, Lefkowitz G. et al. 1995. Neu differentiation factor is a neuron-glia signal and regulates survival, proliferation, and maturation of rat Schwann cell precursors.. Neuron 15:585–96 [Google Scholar]
  95. Donoghue MJ, Lewis RM, Merlie JP, Sanes JR. 1996. An eph kinase ligand, AL–1, is expressed by rostral muscles and inhibits outgrowth from caudal neurons.. Mol. Cell. Neurosci. 8:185–98 [Google Scholar]
  96. Donoghue MJ, Morris-Valero R, Johnson YR, Merlie JP, Sanes JR. 1992. Mammalian muscle cells bear a cell-autonomous, heritable memory of their rostrocaudal position.. Cell 69:67–77 [Google Scholar]
  97. Donoghue MJ, Sanes JR. 1994. All muscles are not created equal.. Trends Genet. 10:396–401 [Google Scholar]
  98. Duclert A, Changeux JP. 1995. Acetylcholine receptor gene expression at the developing neuromuscular junction.. Physiol. Rev. 75:339–68 [Google Scholar]
  99. Duclert A, Savatier N, Schaeffer L, Changeux JP. 1996. Identification of an element crucial for the sub-synaptic expression of the acetylcholine receptor ε-subunit gene.. J. Biol. Chem. 271:17433–38 [Google Scholar]
  100. Dunaevsky A, Connor EA. 1998. Stability of frog motor nerve terminals in the absence of target muscle fibers.. Dev. Biol. 194:61–71 [Google Scholar]
  101. Dunia R, Herrera AA. 1993. Synapse formation and elimination during growth of the pectoral muscle in Xenopus laevis.. J. Physiol. 469:501–9 [Google Scholar]
  102. Duxson MJ, Vrbova G. 1985. Inhibition of acetylcholinesterase accelerates axon terminal withdrawal at the developing rat neuromuscular junction.. J. Neurocytol. 14:337–63 [Google Scholar]
  103. Eftimie R, Brenner HR, Buonanno A. 1991. Myogenin and MyoD join a family of skeletal muscle genes regulated by electrical activity.. Proc. Natl. Acad. Sci. USA 88:1349–53 [Google Scholar]
  104. Eisen JS. 1994. Development of motoneuronal phenotype.. Annu. Rev. Neurosci. 17:1–30 [Google Scholar]
  105. Elizalde A, Huerta M, Stefani E. 1983. Selective reinnervation of twitch and tonic muscle fibres of the frog.. J. Physiol. 340:513–24 [Google Scholar]
  106. Engel AG. 1994. The neuromuscular junction. In Myology: Basic and Clinical, Vol. 1, ed. AG Engel, C Franzini-Armstrong 261–302 New York: McGraw-Hill
  107. English AW. 1990. Development of compartmentalized innervation of the rat gluteus maximus muscle.. J. Comp. Neurol. 301:104–13 [Google Scholar]
  108. English AW, Schwartz G. 1995. Both basic fibroblast growth factor and ciliary neurotrophic factor promote the retention of polyneuronal innervation of developing skeletal muscle fibers.. Dev. Biol. 169:57–64 [Google Scholar]
  109. Evers J, Laser M, Sun YA, Xie ZP, Poo MM. 1989. Studies of nerve-muscle interactions in Xenopus cell culture: analysis of early synaptic currents.. J. Neurosci. 9:1523–39 [Google Scholar]
  110. Fahim MA. 1989. Rapid neuromuscular remodeling following limb immobilization.. Anat. Rec. 224:102–9 [Google Scholar]
  111. Fallon JR, Gelfman CE. 1989. Agrin-related molecules are concentrated at acetylcholine receptor clusters in normal and aneural developing muscle.. J. Cell Biol. 108:1527–35 [Google Scholar]
  112. Falls DL, Rosen KM, Corfas G, Lane WS, Fischbach GD. 1993. ARIA, a protein that stimulates acetylcholine receptor synthesis, is a member of the neu ligand family.. Cell 72:801–15 [Google Scholar]
  113. Fambrough DM. 1979. Control of acetylcholine receptors in skeletal muscle.. Physiol. Rev. 59:165–227 [Google Scholar]
  114. Feng G, Steinbach JH, Sanes JR. 1998. Rapsyn clusters neuronal acetylcholine receptors but is inessential for formation of an interneuronal cholinergic synapse.. J. Neurosci. 18:4166–76 [Google Scholar]
  115. Ferns MJ, Campanelli JT, Hoch W, Scheller RH, Hall ZW. 1993. The ability of agrin to cluster AChRs depends on alternative splicing and on cell surface proteoglycans.. Neuron 11:491–502 [Google Scholar]
  116. Ferns M, Hoch W, Campanelli JT, Rupp F, Hall ZW, Scheller RH. 1992. RNA splicing regulates agrin-mediated acetylcholine receptor clustering activity in cultured myotubes.. Neuron 8:1079–86 [Google Scholar]
  117. Ferns M, Deiner M, Hall Z. 1996. Agrin-induced acetylcholine receptor clustering in mammalian muscle requires tyrosine phosphorylation.. J. Cell Biol. 132:937–44 [Google Scholar]
  118. Fischbach GD, Rosen KM. 1997. ARIA: A neuromuscular junction neuregulin.. Annu. Rev. Neurosci. 20:429–58 [Google Scholar]
  119. Fitzsimonds RM, Poo MM. 1998. Retrograde signaling in the development and modification of synapses.. Physiol. Rev. 78:143–70 [Google Scholar]
  120. Flanagan JG, Vanderhaeghen P. 1998. The ephrins and eph receptors in neural development.. Annu. Rev. Neurosci. 21:309–45 [Google Scholar]
  121. Flucher BE, Daniels MP. 1989. Distribution of Na+ channels and ankyrin in neuromuscular junctions is complementary to that of acetylcholine receptors and the 43 kd protein.. Neuron 3:163–75 [Google Scholar]
  122. Fontaine B, Klarsfeld A, Changeux JP. 1987. Calcitonin gene-related peptide and muscle activity regulate acetylcholine receptor α-subunit mRNA levels by distinct intracellular pathways.. J. Cell Biol. 105:1337–42 [Google Scholar]
  123. Fontaine B, Klarsfeld A, Hokfelt T, Changeux JP. 1986. Calcitonin gene-related peptide, a peptide present in spinal cord motoneurons, increases the number of acetylcholine receptors in primary cultures of chick embryo myotubes.. Neurosci. Lett. 71:59–65 [Google Scholar]
  124. Frail DE, Mudd J, Shah V, Carr C, Cohen JB, Merlie JP. 1987. cDNAs for the postsynaptic 43-kDa protein of Torpedo electric organ encode two proteins with different carboxy1 termini.. Proc. Natl. Acad. Sci. USA 84:6302–6 [Google Scholar]
  125. Frank E, Fischbach GD. 1979. Early events in neuromuscular junction formation in vitro: induction of acetylcholine receptor clusters in the postsynaptic membrane and morphology of newly formed synapses.. J. Cell Biol. 83:143–58 [Google Scholar]
  126. Frank E, Gautvik K, Sommerschild H. 1976. Persistence of junctional acetylcholine receptors following denervation.. Cold Spring Harbor Symp. Quant. Biol. 40:275–81 [Google Scholar]
  127. Frank E, Jansen JK, Lomo T, Westgaard RH. 1975. The interaction between foreign and original motor nerves innervating the soleus muscle of rats.. J. Physiol. 247:725–43 [Google Scholar]
  128. Froehner SC, Luetje CW, Scotland PB, Patrick J. 1990. The postsynaptic 43K protein clusters muscle nicotinic acetylcholine receptors in Xenopus oocytes.. Neuron 5:403–10 [Google Scholar]
  129. Fromm L, Burden SJ. 1998. Synapse-specific and neuregulin-induced transcription require an ETS site that binds GABPα/GABPβ.. Genes Dev. In press [Google Scholar]
  130. Fuhrer C, Hall ZW. 1996. Functional interaction of src family kinases with the acetylcholine receptor in C2 myotubes.. J. Biol. Chem. 271:32474–81 [Google Scholar]
  131. Fuhrer C, Sugiyama JE, Taylor RG, Hall ZW. 1997. Association of muscle-specific kinase MuSK with the acetylcholine receptor in mammalian muscle.. EMBO J. 16:4951–60 [Google Scholar]
  132. Gan W-B, Lichtman JW. 1998. Synaptic segregation at the developing neuromuscular junction.. Science. In press [Google Scholar]
  133. Ganju P, Walls E, Brennan J, Reith AD. 1995. Cloning and developmental expression of Nsk2, a novel receptor tyrosine kinase implicated in skeletal myogenesis.. Oncogene 11:281–90 [Google Scholar]
  134. Gao FB. 1998. Messenger RNAs in dendrites: localization, stability, and implications for neuronal function.. BioEssays 20:70–78 [Google Scholar]
  135. Gardiner PF. 1993. Physiological properties of motoneurons innervating different muscle unit types in rat gastrocnemius.. J. Neurophysiol. 69:1160–70 [Google Scholar]
  136. Gatchalian CL, Schachner M, Sanes JR. 1989. Fibroblasts that proliferate near denervated synaptic sites in skeletal muscle synthesize the adhesive molecules tenascin (J1), N-CAM, fibronectin, and a heparan sulfate proteoglycan.. J. Cell Biol. 108:1873–90 [Google Scholar]
  137. Gates HJ, Betz WJ. 1993. Spatial distribution of muscle fibers in a lumbrical muscle of the rat.. Anat. Rec. 236:381–89 [Google Scholar]
  138. Gautam M, Noakes PG, Moscoso L, Rupp F, Scheller RH. et al. 1996. Defective neuromuscular synaptogenesis in agrin-deficient mutant mice.. Cell 85:525–35 [Google Scholar]
  139. Gautam M, Noakes PG, Mudd J, Nichol M, Chu GC. et al. 1995. Failure of postsynaptic specialization to develop at neuromuscular junctions of rapsyn-deficient mice.. Nature 377:232–36 [Google Scholar]
  140. Gee SH, Montanaro F, Lindenbaum MH, Carbonetto S. 1994. Dystroglycan-a, a dystrophin-associated glycoprotein, is a functional agrin receptor.. Cell 77:675–86 [Google Scholar]
  141. Gesemann M, Cavalli V, Denzer AJ, Brancaccio A, Schumacher B, Ruegg MA. 1996. Alternative splicing of agrin alters its binding to heparin, dystroglycan, and the putative agrin receptor.. Neuron 16:755–67 [Google Scholar]
  142. Gesemann M, Denzer AJ, Ruegg MA. 1995. Acetylcholine receptor-aggregating activity of agrin isoforms and mapping of the active site.. J. Cell Biol. 128:625–36 [Google Scholar]
  143. Gillespie SK, Balasubramanian S, Fung ET, Huganir RL. 1996. Rapsyn clusters and activates the synapse-specific receptor tyrosine kinase MuSK.. Neuron 16:953–62 [Google Scholar]
  144. Glass DJ, Apel ED, Shah S, Bowen DC, DeChiara TM. et al. 1997. MuSK kinase domain sufficient for phosphorylation but not clustering of acetylcholine receptors.. Proc. Natl. Acad. Sci. USA 94:8848–53 [Google Scholar]
  145. Glass DJ, Bowen DC, Stitt TN, Radziejewski C, Bruno J. et al. 1996. Agrin acts via a MuSK receptor complex.. Cell 85:513–23 [Google Scholar]
  146. Glazner GW, Yadav K, Fitzgerald S, Coven E, Brenneman DE, Nelson PG. 1997. Cholinergic stimulation increases thrombin activity and gene expression in cultured mouse muscle.. Dev. Brain Res. 99:148–54 [Google Scholar]
  147. Glicksman MA, Sanes JR. 1983. Differentiation of motor nerve terminals formed in the absence of muscle fibres.. J. Neurocytol. 12:661–71 [Google Scholar]
  148. Godfrey EW, Nitkin RM, Wallace BG, Rubin LL, McMahan UJ. 1984. Components of Torpedo electric organ and muscle that cause aggregation of acetylcholine receptors on cultured muscle cells.. J. Cell Biol. 99:615–27 [Google Scholar]
  149. Goldman D, Brenner HR, Heinemann S. 1988. Acetylcholine receptor, α, β, γ, σ subunit mRNA levels are regulated by muscle activity.. Neuron 1:329–33 [Google Scholar]
  150. Goldman D, Staple J. 1989. Spatial and temporal expression of acetylcholine receptor RNAs in innervated and denervated rat soleus muscle.. Neuron 3:219–28 [Google Scholar]
  151. Goldman DB, Carlson M, Staple J. 1991. Induction of adult-type nicotinic acetylcholine receptor gene expression in noninnervated regenerating muscle.. Neuron 7:649–58 [Google Scholar]
  152. Goodearl AD, Yee AG, Sandrock AW Jr, Corfas G, Fischbach GD. 1995. ARIA is concentrated in the synaptic basal lamina of the developing chick neuromuscular junction.. J. Cell Biol. 130:1423–34 [Google Scholar]
  153. Grady RM, Merlie JP, Sanes JR. 1997a. Subtle neuromuscular defects in utrophin-deficient mice.. J. Cell Biol. 136:871–82 [Google Scholar]
  154. Grady RM, Teng H, Nichol MC, Cunningham JC, Wilkinson RS, Sanes JR. 1997b. Skeletal and cardiac myopathies in mice lacking utrophin and dystrophin: a model for Duchenne muscular dystrophy.. Cell 90:729–38 [Google Scholar]
  155. Gramolini AO, Burton EA, Tinsley JM, Ferns MJ, Cartaud A. et al. 1998. Muscle and neural isoforms of agrin increase utrophin expression in cultured myotubes via a transcriptional regulatory mechanism.. J. Biol. Chem. 273:1–8 [Google Scholar]
  156. Grinnell AD. 1995. Dynamics of nerve-muscle interaction in developing and mature neuromuscular junctions.. Physiol. Rev. 75:789–824 [Google Scholar]
  157. Grinspan JB, Marchionni MA, Reeves M, Coulaloglou M, Scherer SS. 1996. Axonal interactions regulate Schwann cell apoptosis in developing peripheral nerve: neuregulin receptors and the role of neuregulins.. J. Neurosci. 16:6107–18 [Google Scholar]
  158. Gu Y, Hall ZW. 1988. Immunological evidence for a change in subunits of the acetylcholine receptor in developing and denervated rat muscle.. Neuron. 1:117–25 [Google Scholar]
  159. Gundersen K, Sanes JR, Merlie JP. 1993. Neural regulation of muscle acetylcholine receptor α- and ε-subunit gene promoters in transgenic mice.. J. Cell Biol. 123:1535–44 [Google Scholar]
  160. Gurney ME, Yamamoto H, Kwon Y. 1992. Induction of motor neuron sprouting in vivo by ciliary neurotrophic factor and basic fibroblast growth factor.. J. Neurosci. 12:3241–47 [Google Scholar]
  161. Hall ZW, Sanes JR. 1993. Synaptic structure and development: the neuromuscular junction.. Cell 72:99–121 [Google Scholar]
  162. Hardman VJ, Brown MC. 1987. Accuracy of reinnervation of rat intercostal muscles by their own segmental nerves.. J. Neurosci. 7:1031–36 [Google Scholar]
  163. Herrera AA, Werle MJ. 1990. Mechanisms of elimination, remodeling, and competition at frog neuromuscular junctions.. J. Neurobiol. 21:73–98 [Google Scholar]
  164. Hesselmans LF, Jennekens FG, Van Den Oord CJ, Veldman H, Vincent A. 1993. Development of innervation of skeletal muscle fibers in man: relation to acetylcholine receptors.. Anat. Rec. 236:553–62 [Google Scholar]
  165. Hirata K, Zhou C, Nakamura K, Kawabuchi M. 1997. Postnatal development of Schwann cells at neuromuscular junctions, with special reference to synapse elimination.. J. Neurocytol. 26:799–809 [Google Scholar]
  166. Hoch W, Ferns M, Campanelli JT, Hall ZW, Scheller RH. 1993. Developmental regulation of highly active alternatively spliced forms of agrin.. Neuron 11:479–90 [Google Scholar]
  167. Hopf C, Hoch W. 1996. Agrin binding to α-dystroglycan. Domains of agrin necessary to induce acetylcholine receptor clustering are overlapping but not identical to the α-dystroglycan-binding region.. J. Biol. Chem. 271:5231–36 [Google Scholar]
  168. Hopf C, Hoch W. 1998a. Dimerization of the muscle-specific kinase induces tyrosine phosphorylation of acetylcholine receptors and their aggregation on the surface of myotubes.. J. Biol. Chem. 273:6467–73 [Google Scholar]
  169. Hopf C, Hoch W. 1998b. Tyrosine phosphorylation of the muscle-specific kinase is exclusively induced by acetylcholine receptor-aggregating agrin fragments.. Eur. J. Biochem. 253:382–89 [Google Scholar]
  170. Huang CF, Flucher B, Schmidt M, Stroud SK, Schmidt J. 1994a. Depolarization-transcription signals in skeletal muscle use calcium flux through L channels, but bypass the sarcoplasmic reticulum.. Neuron 13:167–77 [Google Scholar]
  171. Huang CF, Lee YS, Schmidt MM, Schmidt J. 1994b. Rapid inhibition of myogenin-driven acetylcholine receptor subunit gene transcription.. EMBO J. 13:634–40 [Google Scholar]
  172. Huang CF, Tong J, Schmidt J. 1992. Protein kinase C couples membrane excitation to acetylcholine receptor gene inactivation in chick skeletal muscle.. Neuron 9:671–78 [Google Scholar]
  173. Hume RI, Role LW, Fischbach GD. 1983. Acetylcholine release from growth cones detected with patches of acetylcholine receptor-rich membranes.. Nature 305:632–34 [Google Scholar]
  174. Hunter DD, Shah V, Merlie JP, Sanes JR. 1989. A laminin-like adhesive protein concentrated in the synaptic cleft of the neuromuscular junction.. Nature 338:229–34 [Google Scholar]
  175. Ide C. 1996. Peripheral nerve regeneration.. Neurosci. Res. 25:101–21 [Google Scholar]
  176. Imaizumi-Scherrer T, Faust DM, Benichou JC, Hellio R, Weiss MC. 1996. Accumulation in fetal muscle and localization to the neuromuscular junction of cAMP-dependent protein kinase A regulatory and catalytic subunits RI α and C α.. J. Cell Biol. 134:1241–54 [Google Scholar]
  177. Jansen JK, Fladby T. 1990. The perinatal reorganization of the innervation of skeletal muscle in mammals.. Prog. Neurobiol. 34:39–90 [Google Scholar]
  178. Jasmin BJ, Antony C, Changeux JP, Cartaud J. 1995. Nerve-dependent plasticity of the golgi complex in skeletal muscle fibres: compartmentalization within the subneural sarcoplasm.. Eur. J. Neurosci. 7:470–79 [Google Scholar]
  179. Jennings CG, Dyer SM, Burden SJ. 1993. Muscle-specific trk-related receptor with a kringle domain defines a distinct class of receptor tyrosine kinases.. Proc. Natl. Acad. Sci. USA 90:2895–99 [Google Scholar]
  180. Jessell TM, Siegel RE, Fischbach GD. 1979. Induction of acetylcholine receptors on cultured skeletal muscle by a factor extracted from brain and spinal cord.. Proc. Natl. Acad. Sci. USA 76:5397–401 [Google Scholar]
  181. Jo SA, Burden SJ. 1992. Synaptic basal lamina contains a signal for synapse-specific transcription.. Development 115:673–80 [Google Scholar]
  182. Jo SA, Zhu X, Marchionni MA, Burden SJ. 1995. Neuregulins are concentrated at nerve-muscle synapses and activate ACh-receptor gene expression.. Nature 373:158–61 [Google Scholar]
  183. Jones G, Herczeg A, Ruegg MA, Lichsteiner M, Kroger S, Brenner HR. 1996. Substrate-bound agrin induces expression of acetylcholine receptor ε-subunit gene in cultured mammalian muscle cells.. Proc. Natl. Acad. Sci. USA [Google Scholar]
  184. Jones G, Meier T, Lichtsteiner M, Witzemann V, Sakmann B, Brenner HR. 1997. Induction by agrin of ectopic and functional postsynaptic-like membrane in innervated muscle.. Proc. Natl. Acad. Sci. USA 94:2654–59 [Google Scholar]
  185. Jordan CL. 1996a. Ciliary neurotrophic factor may act in target musculature to regulate developmental synapse elimination.. Dev. Neurosci. 18:185–98 [Google Scholar]
  186. Jordan CL. 1996b. Morphological effects of ciliary neurotrophic factor treatment during neuromuscular synapse elimination.. J. Neurobiol. 31:29 [Google Scholar]
  187. Jordan CL, Watamura S, Arnold AP. 1995. Androgenic, not estrogenic, steroids alter neuromuscular synapse elimination in the rat levator ani.. Dev. Brain Res. 84:215–24 [Google Scholar]
  188. Katz B. 1966. Nerve, Muscle and Synapse. New York: McGraw-Hill [Google Scholar]
  189. Kawabuchi M, Zhou C, Nakamura K, Hirata K. 1995. Morphological features of collateral innervation and supernumerary innervation in the skeletal muscles of presenile rats.. Anat. Anz. 177:251–65 [Google Scholar]
  190. Kelly AM, Zacks SI. 1969. The fine structure of motor endplate morphogenesis.. J. Cell Biol. 42:154–69 [Google Scholar]
  191. Keshishian H, Broadie K, Chiba A, Bate M. 1996. The drosophila neuromuscular junction: a model system for studying synaptic development and function.. Annu. Rev. Neurosci. 19:545–75 [Google Scholar]
  192. Kidokoro Y, Yeh E. 1982. Initial synaptic transmission at the growth cone in Xenopus nerve-muscle cultures.. Proc. Natl. Acad. Sci. USA 79:6727–31 [Google Scholar]
  193. Kirsch J, Meyer G, Betz H. 1996. Synaptic targeting of ionotropic neurotransmitter receptors.. Mol. Cell. Neurosci. 8:93–98 [Google Scholar]
  194. Klarsfeld A, Bessereau JL, Salmon AM, Triller A, Babinet C, Changeux JP. 1991. An acetylcholine receptor α-subunit promoter conferring preferential synaptic expression in muscle of transgenic mice.. EMBO J. 10:625–32 [Google Scholar]
  195. Klarsfeld A, Changeux JP. 1985. Activity regulates the levels of acetylcholine receptor α-subunit mRNA in cultured chick myotubes.. Proc. Natl. Acad. Sci. USA 82:4558–62 [Google Scholar]
  196. Klarsfeld A, Laufer R, Fontaine B, Devillers-Thiery A, Dubreuil C, Changeux JP. 1989. Regulation of the muscle AChR α-subunit gene expression by electrical activity: involvement of protein kinase C and Ca++.. Neuron 2:1229–36 [Google Scholar]
  197. Ko CP. 1985. Formation of the active zone at developing neuromuscular junctions in larval and adult bullfrogs.. J. Neurocytol. 14:487–512 [Google Scholar]
  198. Ko CP, Chen L. 1996. Synaptic remodeling revealed by repeated in vivo observations and electron microscopy of identified frog neuromuscular junctions.. J. Neurosci. 16:1780–90 [Google Scholar]
  199. Koike S, Schaeffer L, Changeux JP. 1995. Identification of DNA element determining synaptic expression of the mouse acetylcholine receptor σ-subunit gene.. Proc. Natl. Acad. Sci. USA 92:10624–28 [Google Scholar]
  200. Krejci E, Thomine S, Boschetti N, Legay C, Sketelj J, Massoulie J. 1997. The mammalian gene of acetylcholinesterase-associated collagen.. J. Biol. Chem. 272:22840–47 [Google Scholar]
  201. Kuffler D, Thompson W, Jansen JK. 1977. The elimination of synapses in multiply-innervated skeletal muscle fibres of the rat: dependence on distance between endplates.. Brain Res. 138:353–58 [Google Scholar]
  202. Kuffler DP. 1986. Accurate reinnervation of motor endplates after disruption of sheath cells and muscle fibers.. J. Comp. Neurol. 250:228–35 [Google Scholar]
  203. Kuffler DP, Thompson WJ, Jansen JK. 1980. The fate of foreign endplates in cross-innervated rat soleus muscle.. Proc. R. Soc. London (Biol.) 208:189–222 [Google Scholar]
  204. Kullberg RW, Lentz TL, Cohen MW. 1977. Development of the myotomal neuromuscular junction in Xenopus laevis: an electrophysiological and fine-structural study.. Dev. Biol. 60:101–29 [Google Scholar]
  205. Kwon YW, Abbondanzo SJ, Stewart CL, Gurney ME. 1995. Leukemia inhibitory factor influences the timing of programmed synapses withdrawal from neonatal muscles.. J. Neurobiol. 28:35–50 [Google Scholar]
  206. Kwon YW, Gurney ME. 1994. Systemic injections of ciliary neurotrophic factor induce sprouting by adult motor neurons.. NeuroReport 5:789–92 [Google Scholar]
  207. Kwon YW, Gurney ME. 1996. Brain-derived neurotrophic factor transiently stabilizes silent synapses on developing neuromuscular junctions.. J. Neurobiol. 29:503–16 [Google Scholar]
  208. Lance-Jones C, Landmesser L. 1981. Pathway selection by embryonic chick motoneurons in an experimentally altered environment.. Proc. R. Soc. London (Biol.) 214:19–52 [Google Scholar]
  209. Landau BR, Akert K, Roberts TS. 1962. Studies on the innervation of the diaphragm.. J. Comp. Neurol. 119:1–10 [Google Scholar]
  210. Langenfeld-Oster B, Dorlochter M, Wernig A. 1993. Regular and photodamage-enhanced remodelling in vitally stained frog and mouse neuromuscular junctions.. J. Neurocytol. 22:517–30 [Google Scholar]
  211. Laskowski MB, Colman H, Nelson C, Lichtman JW. 1998a. Synaptic competition during the reformation of a neuromuscular map.. J. Neurosci. 18: 7328–35 [Google Scholar]
  212. Laskowski MB, Feng G, Nichol M, Sanes JR. 1998b. Overexpression of ephrin A5 in muscle disrupts neuromuscular topography.. Neurosci. Abstr. 24:791 [Google Scholar]
  213. Laskowski MB, Owens JL. 1994. Embryonic expression of motoneuron topography in the rat diaphragm muscle.. Dev. Biol. 166:502–8 [Google Scholar]
  214. Laskowski MB, Sanes JR. 1987. Topographic mapping of motor pools onto skeletal muscles.. J. Neurosci. 7:252–60 [Google Scholar]
  215. Laskowski MB, Sanes JR. 1988. Topographically selective reinnervation of adult mammalian skeletal muscles.. J. Neurosci. 8:3094–99 [Google Scholar]
  216. Leber SM, Breedlove SM, Sanes JR. 1990. Lineage, arrangement, and death of clonally related motoneurons in chick spinal cord.. J. Neurosci. 10:2451–62 [Google Scholar]
  217. Lemke G. 1996. Neuregulins in development.. Mol. Cell. Neurosci. 7:247–62 [Google Scholar]
  218. Lichtman JW, Wilkinson RS, Rich MD. 1985. Multiple innervation of tonic endplates revealed by activity-dependent uptake of fluorescent probes.. Nature 314:357–59 [Google Scholar]
  219. Lichtman JW, Magrassi L, Purves D. 1987. Visualization of neuromuscular junctions over periods of several months in living mice.. J. Neurosci. 7:1215–22 [Google Scholar]
  220. Lichtman JW, Balice-Gordon RJ. 1990. Understanding synaptic competition in theory and in practice.. J. Neurobiol. 21:99–106 [Google Scholar]
  221. Linden DC, Jerian SM, Letinsky MS. 1988. Neuromuscular junction development in the cutaneous pectoris muscle of Rana catesbeiana.. Exp. Neurol. 99:735–60 [Google Scholar]
  222. Liu Y, Fields RD, Festoff BW, Nelson PG. 1994. Proteolytic action of thrombin is required for electrical activity-dependent synapse reduction.. Proc. Natl. Acad. Sci. USA 91:10300–4 [Google Scholar]
  223. Loeb JA, Fischbach GD. 1995. ARIA can be released from extracellular matrix through cleavage of a heparin-binding domain.. J. Cell Biol. 130:127–35 [Google Scholar]
  224. Lohof AM, Delhaye-Bouchaud N, Mariana J. 1996. Synapse elimination in the central nervous system: functional significance and cellular mechanisms.. Rev. Neurosci. 7:85–101 [Google Scholar]
  225. Lomo T, Westgaard RH. 1975. Control of ACh sensitivity in rat muscle fibers.. Cold Spring Harbor Symp. Quant. Biol. 40:263–74 [Google Scholar]
  226. Lou XJ, Bixby JL. 1995. Patterns of presynaptic gene expression define two stages of synaptic differentiation.. Mol. Cell. Neurosci. 6:252–62 [Google Scholar]
  227. Lu B, Czernik AJ, Popov S, Wang T, Poo MM, Greengard P. 1996. Expression of synapsin I correlates with maturation of the neuromuscular synapse.. Neuroscience 74:1087–97 [Google Scholar]
  228. Lu B, Figurov A. 1997. Role of neurotrophins in synapse development and plasticity.. Rev. Neurosci. 8:1–12 [Google Scholar]
  229. Ludatscher RM, Silbermann M, Gershon D, Reznick A. 1985. Evidence of Schwann cell degeneration in the aging mouse motor end-plate region.. Exp. Gerontol. 20:81–91 [Google Scholar]
  230. Lupa MT, Gordon H, Hall ZW. 1990. A specific effect of muscle cells on the distribution of presynaptic proteins in neurites and its absence in a C2 muscle cell variant.. Dev. Biol. 142:31–43 [Google Scholar]
  231. Lupa MT, Hall ZW. 1989. Progressive restriction of synaptic vesicle protein to the nerve terminal during development of the neuromuscular junction.. J. Neurosci. 9:3937–45 [Google Scholar]
  232. Mann S, Kroger S. 1996. Agrin is synthesized by retinal cells and colocalizes with gephyrin.. Mol. Cell. Neurosci. 8:1–13 [Google Scholar]
  233. Martin D, Merkel E, Tucker KK, McManaman JL, Albert D. et al. 1996. Cachectic effect of ciliary neurotrophic factor on innervated skeletal muscle.. Am. J. Physiol. 271:R1422–R1428 [Google Scholar]
  234. Martin PT, Ettinger AJ, Sanes JR. 1995. A synaptic localization domain in the synaptic cleft protein laminin β2 (s-laminin).. Science 269:413–16 [Google Scholar]
  235. Martin PT, Kaufman SJ, Kramer RH, Sanes JR. 1996. Synaptic integrins in developing, adult, and mutant muscle: selective association of α1, α7A, and α7B integrins with the neuromuscular junction.. Dev. Biol. 174:125–39 [Google Scholar]
  236. Martin PT, Sanes JR. 1995. Role for a synapse-specific carbohydrate in agrin-induced clustering of acetylcholine receptors.. Neuron 14:743–54 [Google Scholar]
  237. Martin PT, Sanes JR. 1997. Integrins mediate adhesion to agrin and modulate agrin signaling.. Development 124:3909–17 [Google Scholar]
  238. Martinou JC, Falls DL, Fischbach GD, Merlie JP. 1991. Acetylcholine receptor-inducing activity stimulates expression of the ε-subunit gene of the muscle acetylcholine receptor.. Proc. Natl. Acad. Sci. USA 88:7669–73 [Google Scholar]
  239. Martinou JC, Merlie JP. 1991. Nerve-dependent modulation of acetylcholine receptor ϵ-subunit gene expression.. J. Neurosci. 11:1291–99 [Google Scholar]
  240. Massoulie J, Pezzementi L, Bon S, Krejci E, Vallette FM. 1993. Molecular and cellular biology of cholinesterases.. Prog. Neurobiol. 41:31–91 [Google Scholar]
  241. Matsuoka I, Nakane A, Kurihara K. 1997. Induction of LIF-mRNA by TGF-β1 in Schwann cells.. Brain Res. 776:170–80 [Google Scholar]
  242. McMahan UJ. 1990. The agrin hypothesis.. Cold Spring Harbor Symp. Quant. Biol. 55:407–18 [Google Scholar]
  243. Megeath LJ, Fallon JR. 1998. Intracellular calcium regulates agrin-induced acetylcholine receptor clustering.. J. Neurosci. 18:672–78 [Google Scholar]
  244. Meier T, Gesemann M, Cavalli V, Ruegg MA, Wallace BG. 1996. AChR phosphorylation and aggregation induced by an agrin fragment that lacks the binding domain for α-dystroglycan.. EMBO J. 15:2625–31 [Google Scholar]
  245. Meier T, Hauser DM, Chiquet M, Landmann L, Ruegg MA, Brenner HR. 1997. Neural agrin induces ectopic postsynaptic specializations in innervated muscle fibers.. J. Neurosci. 17:6534–44 [Google Scholar]
  246. Meier T, Masciulli F, Moore C, Schoumacher F, Eppenberger U. et al. 1998. Agrin can mediate acetylcholine receptor gene expression in muscle by aggregation of muscle-derived neuregulins.. J. Cell Biol. 141:715–26 [Google Scholar]
  247. Merlie JP. 1984. Biogenesis of the acetylcholine receptor, a multisubunit integral membrane protein.. Cell 36:573–75 [Google Scholar]
  248. Merlie JP, Isenberg KE, Russell SD, Sanes JR. 1984. Denervation supersensitivity in skeletal muscle: analysis with a cloned cDNA probe.. J. Cell Biol. 99:332–35 [Google Scholar]
  249. Merlie JP, Sanes JR. 1985. Concentration of acetylcholine receptor mRNA in synaptic regions of adult muscle fibres.. Nature 317:66–68 [Google Scholar]
  250. Meyer D, Birchmeier C. 1995. Multiple essential functions of neuregulin in development.. Nature 378:386–90 [Google Scholar]
  251. Miner JH, Sanes JR. 1994. Collagen IV α3, α4, and α5 chains in rodent basal laminae: sequence, distribution, association with laminins, and developmental switches.. J. Cell Biol. 127:879–91 [Google Scholar]
  252. Mirsky R, Jessen KR. 1996. Schwann cell development, differentiation and myelination.. Curr. Opin. Neurobiol. 6:89–96 [Google Scholar]
  253. Mishina M, Takai T, Imoto K, Noda M, Takahashi T. et al. 1986. Molecular distinction between fetal and adult forms of muscle acetylcholine receptor.. Nature 321:406–11 [Google Scholar]
  254. Missias AC, Chu GC, Klöcke B, Sanes JR, Merlie JP. 1996. Maturation of the acetylcholine receptor in developing skeletal muscle: regulation of the AChR γ-to-ε-switch.. Dev. Biol. 179:223–38 [Google Scholar]
  255. Missias AC, Mudd J, Cunningham JM, Steinbach JH, Merlie JP, Sanes JR. 1997. Deficient development and maintenance of postsynaptic specializations in mutant mice lacking an “adult” acetylcholine receptor subunit.. Development 124:5075–86 [Google Scholar]
  256. Montanaro F, Gee SH, Jacobson C, Lindenbaum MH, Froehner SC, Carbonetto S. 1998. Laminin and α-dystroglycan mediate acetylcholine receptor aggregation via a MuSK-independent pathway.. J. Neurosci. 18:1250–60 [Google Scholar]
  257. Mook-Jung I, Gordon H. 1995. Acetylcholine receptor clustering in C2 muscle cells requires chondroitin sulfate.. J. Neurobiol. 28:482–92 [Google Scholar]
  258. Moscoso LM, Chu GC, Gautam M, Noakes PG, Merlie JP, Sanes JR. 1995a. Synapse-associated expression of an acetylcholine receptor-inducing protein, ARIA/heregulin, and its putative receptors, ErbB2 and ErbB3, in developing mammalian muscle.. Dev. Biol. 172:158–69 [Google Scholar]
  259. Moscoso LM, Cremer H, Sanes JR. 1998. Formation and regeneration of neuromuscular junctions in mice lacking N-CAM, tenascin-C, or FGF-5.. J. Neurosci. 18:1465–77 [Google Scholar]
  260. Moscoso LM, Merlie JP, Sanes JR. 1995b. N-CAM, 43k-rapsyn, and S-laminin mRNAs are concentrated at synaptic sites in muscle fibers.. Mol. Cell. Neurosci. 6:80–89 [Google Scholar]
  261. Moss BL, Schuetze SM. 1987. Development of rat soleus endplate membrane following denervation at birth.. J. Neurobiol. 18:101–18 [Google Scholar]
  262. Nakajima Y, Kidokoro Y, Klier FG. 1980. The development of functional neuromuscular junctions in vitro: an ultrastructural and physiological study.. Dev. Biol. 77:52–72 [Google Scholar]
  263. Namba T, Scheller RH. 1996. Inhibition of agrin-mediated acetylcholine receptor clustering by utrophin C-terminal peptides.. Genes to Cells 1:755–64 [Google Scholar]
  264. New HV, Mudge AW. 1986. Calcitonin gene-related peptide regulates muscle acetylcholine receptor synthesis.. Nature 323:809–11 [Google Scholar]
  265. Nguyen QT, Lichtman JW. 1996. Mechanism of synapse disassembly at the developing neuromuscular junction.. Curr. Opin. Neurobiol. 6:104–12 [Google Scholar]
  266. Nguyen QT, Parsadanian AS, Snider WD, Lichtman JW. 1998. Hyperinnervation of neuromuscular junctions caused by GDNF overexpression in muscle.. Science 279:1725–29 [Google Scholar]
  267. Nitkin RM, Smith MA, Magill C, Fallon JR, Yao YM. et al. 1987. Identification of agrin, a synaptic organizing protein from Torpedo electric organ.. J. Cell Biol. 105:2471–78 [Google Scholar]
  268. Noakes PG, Gautam M, Mudd J, Sanes JR, Merlie JP. 1995. Aberrant differentiation of neuromuscular junctions in mice lacking s-laminin/laminin β2.. Nature 374:258–62 [Google Scholar]
  269. Noakes PG, Phillips WD, Hanley TA, Sanes JR, Merlie JP. 1993. 43K protein and acetylcholine receptors colocalize during the initial stages of neuromuscular synapse formation in vivo.. Dev. Biol. 155:275–80 [Google Scholar]
  270. Nystrom B. 1968. Histochemical studies of end-plate bound esterases in “slow-red” and “fast-white” cat muscles during postnatal development.. Acta Neurol. Scand. 44:295–317 [Google Scholar]
  271. Ogata T. 1988. Structure of motor endplates in the different fiber types of vertebrate skeletal muscles.. Arch. Histol. Cytol. 51:385–424 [Google Scholar]
  272. O'Malley JP, Moore CT, Salpeter MM. 1997. Stabilization of acetylcholine receptors by exogenous ATP and its reversal by cAMP and calcium.. J. Cell Biol. 138:159–65 [Google Scholar]
  273. Ontell M, Ontell MP. 1995. Muscle-specific gene expression during myogenesis in the mouse.. Microsc. Res. Tech. 30:354–65 [Google Scholar]
  274. Oppenheim RW. 1996. Neurotrophic survival molecules for motoneurons: an embarrassment of riches.. Neuron 17:195–97 [Google Scholar]
  275. Ostberg AJ, Vrbova G, O'Brien RA. 1986. Reinnervation of fast and slow mammalian muscles by a superfluous number of motor axons.. Neuroscience 18:205–13 [Google Scholar]
  276. O'Toole JJ, Deyst KA, Bowe MA, Nastuk MA, McKechnie BA, Fallon JR. 1996. Alternative splicing of agrin regulates its binding to heparin, α-dystroglycan, and the cell surface.. Proc. Natl. Acad. Sci. USA 93:7369–74 [Google Scholar]
  277. Ozaki M, Sasner M, Yano R, Lu HS, Buonanno A. 1997. Neuregulin-β induces expression of an NMDA-receptor subunit.. Nature 390:691–94 [Google Scholar]
  278. Pachter BR, Spielholz NI. 1990. Tenotomy-induced motor endplate alterations in rat soleus muscle.. Anat. Rec. 228:104–8 [Google Scholar]
  279. Patton BL, Chiu AY, Sanes JR. 1998. Synaptic laminin prevents glial entry into the synaptic cleft.. Nature 393:698–701 [Google Scholar]
  280. Patton BL, Liu J, Sanes JR. 1995. The synaptic cleft protein s-laminin/laminin β2 promotes synaptic responses by motoneurons, muscle cells, and Schwann cells in vitro.. Neurosci. Abstr. 20:799 [Google Scholar]
  281. Patton BL, Miner JH, Chiu AY, Sanes JR. 1997. Localization, regulation and function of laminins in the neuromuscular system of developing, adult and mutant mice.. J. Cell Biol. 139:1507–21 [Google Scholar]
  282. Peng HB, Ali AA, Dai Z, Daggett DF, Raulo E, Rauvala H. 1995. The role of heparin-binding growth-associated molecule (HB-GAM) in the postsynaptic induction in cultured muscle cells.. J. Neurosci. 15:3027–38 [Google Scholar]
  283. Peng HB, Baker LP, Chen Q. 1991. Induction of synaptic development in cultured muscle cells by basic fibroblast growth factor.. Neuron 6:237–46 [Google Scholar]
  284. Peters MF, Sadoulet-Puccio HM, Grady M, Kramarcy NR, Kunkel LM. et al. 1998. Differential membrane localization and intermolecular associations of α-dystrobrevin isoforms in skeletal muscle.. J. Cell Biol. 142:1269–78 [Google Scholar]
  285. Pette D, Staron RS. 1997. Mammalian skeletal muscle fiber type transitions.. Int. Rev. Cytol. 170:143–223 [Google Scholar]
  286. Pfrieger FW, Barres BA. 1997. Synaptic efficacy enhanced by glial cells in vitro.. Science 277:1684–87 [Google Scholar]
  287. Phillips WD, Kopta C, Blount P, Gardner PD, Steinbach JH, Merlie JP. 1991. ACh receptor-rich membrane domains organized in fibroblasts by recombinant 43-kildalton protein.. Science 251:568–70 [Google Scholar]
  288. Piette J, Bessereau JL, Huchet M, Changeux JP. 1990. Two adjacent MyoD1-binding sites regulate expression of the acetylcholine receptor α-subunit gene.. Nature 345:353–55 [Google Scholar]
  289. Plantinga LC, Verhaagen J, Edwards PM, Hol EM, Bar PR, Gispen WH. 1993. The expression of B-50/GAP-43 in Schwann cells is upregulated in degenerating peripheral nerve stumps following nerve injury.. Brain Res. 602:69–76 [Google Scholar]
  290. Plunkett JA, Baccus SA, Bixby JL. 1998. Differential regulation of synaptic vesicle protein genes by target and synaptic activity.. J. Neurosci. 18:5832–38 [Google Scholar]
  291. Porter BE, Weis J, Sanes JR. 1995. A motoneuron-selective stop signal in the synaptic protein S-laminin.. Neuron 14:549–59 [Google Scholar]
  292. Porter JD, Baker RS. 1996. Muscles of a different ‘color’: the unusual properties of the extraocular muscles may predispose or protect them in neurogenic and myogenic disease.. Neurology 46:30–37 [Google Scholar]
  293. Prody CA, Merlie JP. 1992. The 5′-flanking region of the mouse muscle nicotinic acetylcholine receptor β-subunit gene promotes expression in cultured muscles cells and is activated by MRF4, myogenin and myoD.. Nucleic Acids Res. 20:2367–72 [Google Scholar]
  294. Purves D, Lichtman JW. 1980. Elimination of synapses in the developing nervous system.. Science 210:153–57 [Google Scholar]
  295. Purves D, Lichtman JW. 1987. Synaptic sites on reinnervated nerve cells visualized at two different times in living mice.. J. Neurosci. 7:1492–97 [Google Scholar]
  296. Ramarao MK, Cohen JB. 1998. Mechanism of nicotinic acetylcholine receptor cluster formation by rapsyn.. Proc. Natl. Acad. Sci. USA 95:4007–12 [Google Scholar]
  297. Rao A, Kim E, Sheng M, Craig AM. 1998. Heterogeneity in the molecular composition of excitatory postsynaptic sites during development of hippocampal neurons in culture.. J. Neurosci. 18:1217–29 [Google Scholar]
  298. Rauvala H, Peng HB. 1997. HB-GAM (heparin-binding growth-associated molecule) and heparin-type glycans in the development and plasticity of neuron-target contacts.. Prog. Neurobiol. 52:127–44 [Google Scholar]
  299. Redfern PA. 1970. Neuromuscular transmission in new-born rats.. J. Physiol. 209:701–9 [Google Scholar]
  300. Reist NE, Werle MJ, McMahan UJ. 1992. Agrin released by motor neurons induces the aggregation of acetylcholine receptors at neuromuscular junctions.. Neuron 8:865–68 [Google Scholar]
  301. Reynolds ML, Woolf CJ. 1992. Terminal Schwann cells elaborate extensive processes following denervation of the motor endplate.. J. Neurocytol. 21:50–66 [Google Scholar]
  302. Ribchester RR. 1988. Activity-dependent and -independent synaptic interactions during reinnervation of partially denervated rat muscle.. J. Physiol. 401:53–75 [Google Scholar]
  303. Rich MM, Lichtman JW. 1989a. In vivo visualization of pre- and postsynaptic changes during synapse elimination in reinnervated mouse muscle.. J. Neurosci. 9:1781–1805 [Google Scholar]
  304. Rich M, Lichtman JW. 1989b. Motor nerve terminal loss from degenerating muscle fibers.. Neuron 3:677–88 [Google Scholar]
  305. Ridge RM. 1971. Different types of extrafusal muscle fibres in snake costocutaneous muscles.. J. Physiol. 217:393–418 [Google Scholar]
  306. Ridge RM, Betz WJ. 1984. The effect of selective chronic stimulation on motor unit size in developing rat muscle.. J. Neurosci. 4:2614–20 [Google Scholar]
  307. Ridge RM, Rowlerson A. 1996. Motor units of juvenile rat lumbrical muscles and fibre type compositions of the glycogen-depleted component.. J. Physiol. 497:199–210 [Google Scholar]
  308. Riethmacher D, Sonnenbergriethmacher E, Brinkmann V, Yamaai T, Lewin GR, Birchmeier C. 1997. Severe neuropathies in mice with targeted mutations in the ERBB3 receptor.. Nature 389:725–30 [Google Scholar]
  309. Riley DA. 1981. Ultrastructural evidence for axon retraction during the spontaneous elimination of polyneuronal innervation of the rat soleus muscle.. J. Neurocytol. 10:425–40 [Google Scholar]
  310. Rimer M, Mathiesen I, Lomo T, McMahon UJ. 1997. γ-AChR/ε-AChR switch at agrin-induced postsynaptic-like apparatus in skeletal muscle.. Mol. Cell. Neurosci. 9:254–63 [Google Scholar]
  311. Robitaille R, Garcia ML, Kaczorowski GJ, Charlton MP. 1993. Functional colocalization of calcium and calcium-gated potassium channels in control of neurotransmitter release.. Neuron 11:645–55 [Google Scholar]
  312. Rosenheimer JL, Smith DO. 1985. Differential changes in the end-plate architecture of functionally diverse muscles during aging.. J. Neurophysiol. 53:1567–81 [Google Scholar]
  313. Rosenthal JL, Taraskevich PS. 1977. Reduction of multiaxonal innervation at the neuromuscular junction of the rat during development.. J. Physiol. 270:299–310 [Google Scholar]
  314. Rotundo RL, Rossi SG, Anglister L. 1997. Transplantation of quail collagen-tailed acetylcholinesterase molecules onto the frog neuromuscular synapse.. J. Cell Biol. 136:367–74 [Google Scholar]
  315. Rudnicki MA, Jaenisch R. 1995. The MyoD family of transcription factors and skeletal myogenesis.. BioEssays 17:203–9 [Google Scholar]
  316. Ruegg MA, Tsim KW, Horton SE, Kroger S, Escher G. et al. 1992. The agrin gene codes for a family of basal lamina proteins that differ in function and distribution.. Neuron 8:691–99 [Google Scholar]
  317. Rupp F, Payan DG, Magill-Solc C, Cowan DM, Scheller RH. 1991. Structure and expression of a rat agrin.. Neuron 6:811–23 [Google Scholar]
  318. Salpeter MM, Loring RH. 1985. Nicotinic acetylcholine receptors in vertebrate muscle: properties, distribution and neural control.. Prog. Neurobiol. 25:297–325 [Google Scholar]
  319. Salpeter MM, Marchaterre M, Harris R. 1988. Distribution of extrajunctional acetylcholine receptors on a vertebrate muscle: evaluated by using a scanning electron microscope autoradiographic procedure.. J. Cell Biol. 106:2087–93 [Google Scholar]
  320. Sandrock AW, Dryer SE, Rosen KM, Gozani SN, Kramer R. et al. 1997. Maintenance of acetylcholine receptor number by neuregulins.. Science 276:599–603 [Google Scholar]
  321. Sanes JR. 1995. The synaptic cleft of the neuromuscular junction.. Semin. Dev. Biol. 6:163–73 [Google Scholar]
  322. Sanes JR, Apel ED, Gautam M, Glass D, Grady RM. et al. 1998. Agrin receptors at the skeletal neuromuscular junction.. Ann. NY Acad. Sci. In Press [Google Scholar]
  323. Sanes JR, Johnson YR, Kotzbauer PT, Mudd J, Hanley T. et al. 1991. Selective expression of an acetylcholine receptor-lacZ transgene in synaptic nuclei of adult muscle fibers.. Development 113:1181–91 [Google Scholar]
  324. Sanes JR, Marshall LM, McMahan UJ. 1978. Reinnervation of muscle fiber basal lamina after removal of myofibers. Differentiation of regenerating axons at original synaptic sites.. J. Cell Biol. 78:176–98 [Google Scholar]
  325. Sanes JR, Schachner M, Covault J. 1986. Expression of several adhesive macromolecules (N-CAM, L1, J1, NILE, uvomorulin, laminin, fibronectin, and a heparan sulfate proteoglycan) in embryonic, adult, and denervated adult skeletal muscle.. J. Cell Biol. 102:420–31 [Google Scholar]
  326. Sanes JR, Scheller RH. 1997. Synapse formation: a molecular perspective. In Developmental Neurobiology, ed. WM Cowan, SL Zipursky, TM Jessel 179–219 New York: Oxford Univ. Press
  327. Sapru MK, Florance SK, Kirk C, Goldman D. 1998. Identification of a neuregulin and protein-tyrosine phosphatase response element in the nicotinic acetylcholine receptor ε-subunit gene: regulatory role of an Ets transcription factor.. Proc. Natl. Acad. Sci. USA 95:1–6 [Google Scholar]
  328. Schaeffer L, Duclert N, Huchetdymanus M, Changeux JP. 1998. Implication of a multisubunit ETS-related transcription factor in synaptic expression of the nicotinic acetylcholine receptor.. EMBO J. 17:3078–90 [Google Scholar]
  329. Schiaffino S, Reggiani C. 1996. Molecular diversity of myofibrillar proteins: gene regulation and functional significance.. Physiol. Rev. 76:371–423 [Google Scholar]
  330. Schuetze SM, Role LW. 1987. Developmental regulation of nicotinic acetylcholine receptors.. Annu. Rev. Neurosci. 10:403–57 [Google Scholar]
  331. Scott LJ, Bacou F, Sanes JR. 1988. A synapse-specific carbohydrate at the neuromuscular junction: association with both acetylcholinesterase and a glycolipid.. J. Neurosci. 8:932–44 [Google Scholar]
  332. Sealock R, Wray BE, Froehner SC. 1984. Ultrastructural localization of the Mr 43,000 protein and the acetylcholine receptor in Torpedo postsynaptic membranes using monoclonal antibodies.. J. Cell Biol. 98:2239–44 [Google Scholar]
  333. Serpinskaya AS, Feng G, Sanes JR, Craig AM. 1997. Synapse formation between agrin-deficient neurons.. Neurosci. Abstr. 23:33 [Google Scholar]
  334. Sheard PW, Duxson MJ. 1997. The transient existence of ‘en passant’ nerve terminals in normal embryonic rat skeletal muscle.. Dev. Brain Res. 98:259–64 [Google Scholar]
  335. Shyng SL, Xu R, Salpeter MD. 1991. Cyclic AMP stabilizes the degradation of original junctional acetylcholine receptors in denervated muscle.. Neuron 6:469–75 [Google Scholar]
  336. Si J, Miller DS, Mei L. 1997. Identification of an element required for acetylcholine receptor-inducing activity (ARIA)-induced expression of the acetylcholine receptor ε-subunit gene.. J. Biol. Chem. 272:10367–71 [Google Scholar]
  337. Si JT, Luo ZJ, Mei L. 1996. Induction of acetylcholine receptor gene expression by ARIA requires activation of mitogen-activated protein kinase.. J. Biol. Chem. 271:19752–59 [Google Scholar]
  338. Simon AM, Burden SJ. 1993. An E box mediates activation and repression of the acetylcholine receptor σ-subunit gene during myogenesis.. Mol. Cell. Biol. 13:5133–40 [Google Scholar]
  339. Simon AM, Hoope P, Burden SJ. 1992. Spatial restriction of AChR gene expression to subsynaptic nuclei.. Development 114:545–53 [Google Scholar]
  340. Slater CR. 1982. Postnatal maturation of nerve-muscle junctions in hindlimb muscles of the mouse.. Dev. Biol. 94:11–22 [Google Scholar]
  341. Smith DO, Rosenheimer JL. 1982. Decreased sprouting and degeneration of nerve terminals of active muscles in aged rats.. J. Neurophysiol. 48:100–9 [Google Scholar]
  342. Snider WD, Lichtman JW. 1996. Are neurotrophins synaptotrophins?. Mol. Cell. Neurosci. 7:433–42 [Google Scholar]
  343. Son YJ, Thompson WJ. 1995a. Schwann cell processes guide regeneration of peripheral axons.. Neuron 14:125–32 [Google Scholar]
  344. Son YJ, Thompson WJ. 1995b. Nerve sprouting in muscle is induced and guided by processes extended by Schwann cells.. Neuron 14:133–41 [Google Scholar]
  345. Son YJ, Trachtenberg JT, Thompson WJ. 1996. Schwann cells induce and guide sprouting and reinnervation of neuromuscular junctions.. Trends Neurosci. 19:280–85 [Google Scholar]
  346. Stanco AM, Werle MJ. 1997. Agrin and acetylcholine receptors are removed from abandoned synaptic sites at reinnervated frog neuromuscular junctions.. J. Neurobiol: 999–1018 [Google Scholar]
  347. Steinbach JH. 1981. Developmental changes in acetylcholine receptor aggregates at rat skeletal neuromuscular junctions.. Dev. Biol. 84:267–76 [Google Scholar]
  348. Stockdale FE. 1992. Myogenic cell lineages.. Dev. Biol. 154:284–98 [Google Scholar]
  349. Storms SD, Kim AC, Tran BH, Cole GJ, Murray BA. 1996. NCAM-mediated adhesion of transfected cells to agrin.. Cell Adhes. Commun. 3:497–509 [Google Scholar]
  350. Sudhof TC. 1995. The synaptic vesicle cycle: a cascade of protein-protein.. Nature 375:645–53 [Google Scholar]
  351. Sugiura Y, Woppmann A, Miljanich GP, Ko CP. 1995. A novel ω-conopeptide for the presynaptic localization of calcium channels at the mammalian neuromuscular junction.. J. Neurocytol. 24:15–27 [Google Scholar]
  352. Sugiyama J, Bowen DC, Hall ZW. 1994. Dystroglycan binds nerve and muscle agrin.. Neuron 13:103–15 [Google Scholar]
  353. Sugiyama JE, Glass DJ, Yancopoulos GD, Hall ZW. 1997. Laminin-induced acetylcholine receptor clustering: an alternative pathway.. J. Cell Biol. 139:181–91 [Google Scholar]
  354. Swanson GJ, Vrbova G. 1987. Effects of low calcium and inhibition of calcium-activiated neutral protease (CANP) on mature nerve terminal structure in the rat sternocostalis muscle.. Brain Res. 430:199–203 [Google Scholar]
  355. Takahashi T, Nakajimi Y, Hirosawa K, Nakajimi S, Onodera K. 1987. Structure and physiology of developing neuromuscular synapses in culture.. J. Neurosci. 7:473–81 [Google Scholar]
  356. Tal M, Rotshenker S. 1983. Recycling of synaptic vesicles in motor nerve endings separated from their target muscle fibers.. Brain Res. 270:131–33 [Google Scholar]
  357. Tanabe Y, Jessell TM. 1996. Diversity and pattern in the developing spinal cord.. Science 274:1115–23 [Google Scholar]
  358. Tang J, Jo SA, Burden SJ. 1994. Separate pathways for synapse-specific and electrical activity-dependent gene expression in skeletal muscle.. Development 120:1799–1804 [Google Scholar]
  359. Taniuchi M, Clark HB, Schweitzer JB, Johnson EM Jr. 1988. Expression of nerve growth factor receptors by Schwann cells of axotomized peripheral nerves: ultrastructural location, suppression by axonal contact, and binding properties.. J. Neurosci. 8:664–81 [Google Scholar]
  360. Tansey MG, Chu GC, Merlie JP. 1996. ARIA/HRG regulates AChR ε-subunit gene expression at the neuromuscular synapse via activation of phosphatidylinositol 3-kinase and RAS/MAPK pathway.. J. Cell Biol. 134:465–76 [Google Scholar]
  361. Tessier-Lavigne M, Goodman CS. 1996. The molecular biology of axon guidance.. Science 274:1123–33 [Google Scholar]
  362. Thompson WJ. 1983. Synapse elimination in neonatal rat muscle is sensitive to pattern of muscle use.. Nature 302:614–616 [Google Scholar]
  363. Thompson WJ. 1985. Activity and synapse elimination at the neuromuscular junction.. Cell. Mol. Neurobiol. 5:167–82 [Google Scholar]
  364. Thompson WJ, Condon K, Astrow SH. 1990. The origin and selective innervation of early muscle fiber types in the rat.. J. Neurobiol. 21:212–22 [Google Scholar]
  365. Trachtenberg JT, Thompson WJ. 1996. Schwann cell apoptosis at developing neuromuscular junctions in regulated by glial growth factor.. Nature 379:174–77 [Google Scholar]
  366. Trachtenberg JT, Thompson WJ. 1997. Nerve terminal withdrawal from rat neuromuscular junctions induced by neuregulin and Schwann cells.. J. Neurosci. 17:6243–55 [Google Scholar]
  367. Tsay HJ, Schmidt J. 1989. Skeletal muscle denervation activates acetylcholine receptor genes.. J. Cell Biol. 108:1523–26 [Google Scholar]
  368. Tsen G, Halfter W, Kroger S, Cole GJ. 1995. Agrin is a heparan sulfate proteoglycan.. J. Biol. Chem. 270:3392–99 [Google Scholar]
  369. Tyc F, Vrbova G. 1995. Stabilisation of neuromuscular junctions by leupeptin increases motor unit size in partially denervated rat muscles.. Dev. Brain Res. 88:186–93 [Google Scholar]
  370. Uchida S, Yamamoto H, Iio S, Matsumoto N, Wang XB. et al. 1990. Release of calcitonin gene-related peptide-like immunoreactive substance from neuromuscular junction by nerve excitation and its action on striated muscle.. J. Neurochem. 54:1000–3 [Google Scholar]
  371. Usdin TB, Fischbach G. 1986. Purification and characterization of a polypeptide from chick brain that promotes the accumulation of acetylcholine receptors in chick myotubes.. J. Cell Biol. 103:493–507 [Google Scholar]
  372. Valenzuela DM, Stitt TN, DiStefano PS, Rojas E, Mattsson K. et al. 1995. Receptor tyrosine kinase specific for the skeletal muscle lineage: expression in embryonic muscle, at the neuromuscular junction, and after injury.. Neuron 15:573–84 [Google Scholar]
  373. Vaughn JE. 1989. Fine structure of synaptogenesis in the vertebrate central nervous system.. Synapse 3:255–85 [Google Scholar]
  374. Villarroel A, Sakmann B. 1996. Calcium permeability increase of endplate channels in rat muscle during postnatal development.. J. Physiol. 496:331–38 [Google Scholar]
  375. Walke W, Xiao G, Goldman D. 1996a. Identification and characterization of a 47 base pair activity-dependent enhancer of the rat nicotinic acetylcholine receptor delta-subunit promoter.. J. Neurosci. 16:3641–51 [Google Scholar]
  376. Walke W, Xiao G, Goldman D. 1996b. A dual function activity-dependent, muscle-specific enhancer from rat nicotinic acetylcholine receptor σ-subunit gene.. J. Neurobiol. 31:359–69 [Google Scholar]
  377. Wallace BG. 1989. Agrin-induced specializations contain cytoplasmic, membrane, and extracellular matrix-associated components of the postsynaptic apparatus.. J. Neurosci. 9:1294–302 [Google Scholar]
  378. Wallace BG. 1995. Regulation of the interaction of nicotinic acetylcholine receptors with the cytoskeleton by agrin-activated protein tyrosine kinase.. J. Cell Biol. 128:1121–29 [Google Scholar]
  379. Wallace BG, Qu Z, Huganir RL. 1991. Agrin induces phosphorylation of the nicotinic acetylcholine receptor.. Neuron 6:869–78 [Google Scholar]
  380. Wang X-H, Berninger B, Poo M-M. 1998. Localized synaptic actions of neurotrophin-4.. J. Neurosci. 18:4985–92 [Google Scholar]
  381. Werle MJ, Herrera AA. 1991. Elevated levels of polyneuronal innervation persist for as long as two years in reinnervated frog neuromuscular junctions.. J. Neurobiol. 22:97–103 [Google Scholar]
  382. Werle MJ, Sojka AM. 1996. Anti-agrin staining is absent at abandoned synaptic sites of frog neuromuscular junctions.. J. Neurobiol. 30:293–302 [Google Scholar]
  383. Wernig A, Herrera AA. 1986. Sprouting and remodeling at the nerve-muscle junction.. Prog. Neurobiol. 27:251–91 [Google Scholar]
  384. Wigston DJ. 1986. Selective innervation of transplanted limb muscles by regenerating motor axons in the axolotl.. J. Neurosci. 6:2757–63 [Google Scholar]
  385. Wigston DJ. 1990. Repeated in vivo visualization of neuromuscular junctions in adult mouse lateral gastrocnemius.. J. Neurosci. 10:1753–61 [Google Scholar]
  386. Wigston DJ, Kennedy PR. 1987. Selective reinnervation of transplanted muscles by their original motoneurons in the axolotl.. J. Neurosci. 7:1857–65 [Google Scholar]
  387. Wigston DJ, Sanes JR. 1982. Selective reinnervation of adult mammalian muscle by axons from different segmental levels.. Nature 299:464–67 [Google Scholar]
  388. Wigston DJ, Sanes JR. 1985. Selective reinnervation of rat intercostal muscles transplanted from different segmental levels to a common site.. J. Neurosci. 5:1208–21 [Google Scholar]
  389. Wood SJ, Slater CR. 1997. The contribution of postsynaptic folds to the safety factor for neuromuscular transmission in rat fast- and slow-twitch muscles.. J. Physiol. 500:165–76 [Google Scholar]
  390. Wood SJ, Slater CR. 1998. Beta-spectrin is colocalized with both voltage-gated sodium channels and ankyrin(g) at the adult rat neuromuscular junction.. J. Cell Biol. 140:675–84 [Google Scholar]
  391. Xie ZP, Poo MM. 1986. Initial events in the formation of neuromuscular synapse: rapid induction of acetylcholine release from embryonic neuron.. Proc. Natl. Acad. Sci. USA 83:7069–73 [Google Scholar]
  392. Xu R, Salpeter MM. 1997. Acetylcholine receptors in innervated muscles of dystrophic mdx mice degrade as after denervation.. J. Neurosci. 17:8194–8200 [Google Scholar]
  393. Yee WC, Pestronk A, Alderson K, Yuan CM. 1988. Regional heterogeneity in the distal motor axon: three zones with distinctive intrinsic components.. J. Neurocytol. 17:649–56 [Google Scholar]
  394. You S, Petrov T, Chung PH, Gordon T. 1997. The expression of the low affinity nerve growth factor receptor in long-term denervated Schwann cells.. Glia 20:87–100 [Google Scholar]
  395. Young SH, Poo MM. 1983. Spontaneous release of transmitter from growth cones of embryonic neurones.. Nature 305:634–37 [Google Scholar]
  396. Zhang M, McLennan IS. 1995. During secondary myotube formation, primary, myotubes preferentially absorb new nuclei at their ends.. Dev. Dynam. 204:168–77 [Google Scholar]
  397. Zhou H, Grady RM, Sanes JR. 1998. Muscular dystrophy and impaired aggregation of acetylcholine receptors in α-dystrobrevin-deficient mutant mice.. Neurosci. Abstr. 24:1534 [Google Scholar]
  398. Zhou H, Muramatsu T, Halfter W, Tsim KW, Peng HB. 1997. A role of midkine in the development of the neuromuscular junction.. Mol. Cell. Neurosci. 10:56–70 [Google Scholar]
  399. Zhu X, Lai C, Thomas S, Burden SJ. 1995. Neuregulin receptors, erbB3 and erbB4, are localized at neuromuscular synapses.. EMBO J. 14:5842–48 [Google Scholar]
  400. Zoubine MN, Ma JY, Smirnova IV, Citron BA, Festoff BW. 1996. A molecular mechanism for synapse elimination: novel inhibition of locally generated thrombin delays synapse loss in neonatal mouse muscle.. Dev. Biol. 179:447–57 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error