1932

Abstract

The primate retina is an exciting focus in neuroscience, where recent data from molecular genetics, adaptive optics, anatomy, and physiology, together with measures of human visual performance, are converging to provide new insights into the retinal origins of color vision. Trichromatic color vision begins when the image is sampled by short- (S), middle- (M) and long- (L) wavelength-sensitive cone photoreceptors. Diverse retinal cell types combine the cone signals to create separate luminance, red-green, and blue-yellow pathways. Each pathway is associated with distinctive retinal architectures. Thus a blue-yellow pathway originates in a bistratified ganglion cell type and associated interneurons that combine excitation from S cones and inhibition from L and M cones. By contrast, a red-green pathway, in which signals from L and M cones are opposed, is associated with the specialized anatomy of the primate fovea, in which the “midget” ganglion cells receive dominant excitatory input from a single L or M cone.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.neuro.23.1.743
2000-03-01
2024-12-04
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.neuro.23.1.743
Loading
/content/journals/10.1146/annurev.neuro.23.1.743
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error