Full text loading...
Abstract
Mammalian reproduction depends on the coordinated expression of behavior with precisely timed physiological events that are fundamentally different in males and females. An improved understanding of the neuroanatomical relationships between sexually dimorphic parts of the forebrain has contributed to a significant paradigm shift in how functional neural systems are approached experimentally. This review focuses on the organization of interconnected limbic-hypothalamic pathways that participate in the neural control of reproduction and summarizes what is known about the developmental neurobiology of these pathways. Sex steroid hormones such as estrogen and testosterone have much in common with neurotrophins and regulate cell death, neuronal migration, neurogenesis, and neurotransmitter plasticity. In addition, these hormones direct formation of sexually dimorphic circuits by influencing axonal guidance and synaptogenesis. The signaling events underlying the developmental activities of sex steroids involve interactions between nuclear hormone receptors and other transcriptional regulators, as well as interactions at multiple levels with neurotrophin and neurotransmitter signal transduction pathways.