Experimental studies of gas-phase chemical reactions and molecular energy transfer at very low temperatures and between electrically neutral species are reviewed. Although work of collisionally induced vibrational and rotational transfer is described, emphasis is placed on very recent results on the rates of free radical reactions obtained by applying the pulsed laser photolysis (PLP)–laser-induced fluorescence (LIF) technique in a CRESU (Cinétique de Réactions en Ecoulement Supersonique Uniforme) apparatus at temperatures as low as 13 K. These measurements demonstrate that quite a wide variety of reactions—including those between two radicals, those between radicals and unsaturated molecules, and even some of those between radicals and saturated molecules—remain rapid at very low temperatures. Theoretical efforts to explain some of these results are described, as is their impact on attempts to model the synthesis of molecules in interstellar clouds.


Article metrics loading...

Loading full text...

Full text loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error