1932

Abstract

Crystallization is necessary to obtain the three-dimensional structure of proteins and nucleic acids; it often represents the bottleneck in structure determination. Our understanding of crystallization mechanisms is still incomplete. In this review, we emphasize fundamental aspects of the crystallization process.

Protein-protein contacts in crystals are complex, involving a delicate balance of specific and nonspecific interactions. Depending on solution conditions, these interactions can lead to nucleation of crystals or to amorphous aggregation; this stage of crystallization has been successfully studied by light scattering. Post nucleation crystal growth may proceed by mechanisms involving crystal defects or two-dimensional nucleation, as observed by atomic force and interference microscopy. Cessation of growth has been observed but remains incompletely understood. Impurities may play important roles during all stages of crystallization. Phase diagrams can guide optimization of conditions for nucleation and subsequent crystal growth; a theoretical understanding relating these to the intermolecular interactions is beginning to develop.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.physchem.47.1.171
1996-10-01
2024-06-21
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.physchem.47.1.171
Loading
/content/journals/10.1146/annurev.physchem.47.1.171
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error