1932

Abstract

We review molecular dynamics simulations of nucleic acids, including those completed from 1995 to 2000, with a focus on the applications and results rather than the methods. After the introduction, which discusses recent advances in the simulation of nucleic acids in solution, we describe force fields for nucleic acids and then provide a detailed summary of the published literature. We emphasize simulations of small nucleic acids (∼6 to 24 mer) in explicit solvent with counterions, using reliable force fields and modern simulation protocols that properly represent the long-range electrostatic interactions. We also provide some limited discussion of simulation in the absence of explicit solvent. Absent from this discussion are results from simulations of protein-nucleic acid complexes and modified DNA analogs. Highlights from the molecular dynamics simulation are the spontaneous observation of A B transitions in duplex DNA in response to the environment, specific ion binding and hydration, and reliable representation of protein-nucleic acid interactions. We close by examining major issues and the future promise for these methods.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.physchem.51.1.435
2000-10-01
2024-05-12
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.physchem.51.1.435
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error