Full text loading...
Abstract
▪ Abstract
Recent progress in the development of semiclassical methods to describe quantum effects in molecular dynamics is reviewed. Focusing on rigorous semiclassical methods that are based on the initial-value representation of the semiclassical propagator, we discuss several promising schemes that have been developed in the past few years to extend the applicability of semiclassical approaches to complex molecular systems. In particular, integral-filtering techniques and forward-backward methods are surveyed. Furthermore, recently proposed approaches that allow the semiclassical description of nonadiabatic molecular dynamics are discussed. The potential and efficiency of these methods is illustrated by selected applications.